# hetrf_aa - Man Page

{he,sy}trf_aa: triangular factor

## Synopsis

### Functions

subroutine **chetrf_aa** (uplo, n, a, lda, ipiv, work, lwork, info)**CHETRF_AA**

subroutine **csytrf_aa** (uplo, n, a, lda, ipiv, work, lwork, info)**CSYTRF_AA**

subroutine **dsytrf_aa** (uplo, n, a, lda, ipiv, work, lwork, info)**DSYTRF_AA**

subroutine **ssytrf_aa** (uplo, n, a, lda, ipiv, work, lwork, info)**SSYTRF_AA**

subroutine **zhetrf_aa** (uplo, n, a, lda, ipiv, work, lwork, info)**ZHETRF_AA**

subroutine **zsytrf_aa** (uplo, n, a, lda, ipiv, work, lwork, info)**ZSYTRF_AA**

## Detailed Description

## Function Documentation

### subroutine chetrf_aa (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer lwork, integer info)

**CHETRF_AA**

**Purpose:**

CHETRF_AA computes the factorization of a complex hermitian matrix A using the Aasen's algorithm. The form of the factorization is A = U**H*T*U or A = L*T*L**H where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is a hermitian tridiagonal matrix. This is the blocked version of the algorithm, calling Level 3 BLAS.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is COMPLEX array, dimension (LDA,N) On entry, the hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, the tridiagonal matrix is stored in the diagonals and the subdiagonals of A just below (or above) the diagonals, and L is stored below (or above) the subdiagonals, when UPLO is 'L' (or 'U').

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*IPIV*IPIV is INTEGER array, dimension (N) On exit, it contains the details of the interchanges, i.e., the row and column k of A were interchanged with the row and column IPIV(k).

*WORK*WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*LWORK*LWORK is INTEGER The length of WORK. LWORK >= 2*N. For optimum performance LWORK >= N*(1+NB), where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value.

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **131** of file **chetrf_aa.f**.

### subroutine csytrf_aa (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( * ) work, integer lwork, integer info)

**CSYTRF_AA**

**Purpose:**

CSYTRF_AA computes the factorization of a complex symmetric matrix A using the Aasen's algorithm. The form of the factorization is A = U**T*T*U or A = L*T*L**T where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is a complex symmetric tridiagonal matrix. This is the blocked version of the algorithm, calling Level 3 BLAS.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is COMPLEX array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, the tridiagonal matrix is stored in the diagonals and the subdiagonals of A just below (or above) the diagonals, and L is stored below (or above) the subdiagonals, when UPLO is 'L' (or 'U').

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*IPIV*IPIV is INTEGER array, dimension (N) On exit, it contains the details of the interchanges, i.e., the row and column k of A were interchanged with the row and column IPIV(k).

*WORK*WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*LWORK*LWORK is INTEGER The length of WORK. LWORK >= MAX(1,2*N). For optimum performance LWORK >= N*(1+NB), where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value.

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **131** of file **csytrf_aa.f**.

### subroutine dsytrf_aa (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( * ) work, integer lwork, integer info)

**DSYTRF_AA**

**Purpose:**

DSYTRF_AA computes the factorization of a real symmetric matrix A using the Aasen's algorithm. The form of the factorization is A = U**T*T*U or A = L*T*L**T where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is a symmetric tridiagonal matrix. This is the blocked version of the algorithm, calling Level 3 BLAS.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, the tridiagonal matrix is stored in the diagonals and the subdiagonals of A just below (or above) the diagonals, and L is stored below (or above) the subdiagonals, when UPLO is 'L' (or 'U').

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*IPIV*IPIV is INTEGER array, dimension (N) On exit, it contains the details of the interchanges, i.e., the row and column k of A were interchanged with the row and column IPIV(k).

*WORK*WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*LWORK*LWORK is INTEGER The length of WORK. LWORK >= MAX(1,2*N). For optimum performance LWORK >= N*(1+NB), where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value.

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **131** of file **dsytrf_aa.f**.

### subroutine ssytrf_aa (character uplo, integer n, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( * ) work, integer lwork, integer info)

**SSYTRF_AA**

**Purpose:**

SSYTRF_AA computes the factorization of a real symmetric matrix A using the Aasen's algorithm. The form of the factorization is A = U**T*T*U or A = L*T*L**T where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is a symmetric tridiagonal matrix. This is the blocked version of the algorithm, calling Level 3 BLAS.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is REAL array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, the tridiagonal matrix is stored in the diagonals and the subdiagonals of A just below (or above) the diagonals, and L is stored below (or above) the subdiagonals, when UPLO is 'L' (or 'U').

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*IPIV**WORK*WORK is REAL array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*LWORK*LWORK is INTEGER The length of WORK. LWORK >= MAX(1,2*N). For optimum performance LWORK >= N*(1+NB), where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value.

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **131** of file **ssytrf_aa.f**.

### subroutine zhetrf_aa (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer lwork, integer info)

**ZHETRF_AA**

**Purpose:**

ZHETRF_AA computes the factorization of a complex hermitian matrix A using the Aasen's algorithm. The form of the factorization is A = U**H*T*U or A = L*T*L**H where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is a hermitian tridiagonal matrix. This is the blocked version of the algorithm, calling Level 3 BLAS.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is COMPLEX*16 array, dimension (LDA,N) On entry, the hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, the tridiagonal matrix is stored in the diagonals and the subdiagonals of A just below (or above) the diagonals, and L is stored below (or above) the subdiagonals, when UPLO is 'L' (or 'U').

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*IPIV**WORK*WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*LWORK**INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value.

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **131** of file **zhetrf_aa.f**.

### subroutine zsytrf_aa (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( * ) work, integer lwork, integer info)

**ZSYTRF_AA**

**Purpose:**

ZSYTRF_AA computes the factorization of a complex symmetric matrix A using the Aasen's algorithm. The form of the factorization is A = U**T*T*U or A = L*T*L**T where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and T is a complex symmetric tridiagonal matrix. This is the blocked version of the algorithm, calling Level 3 BLAS.

**Parameters***UPLO*UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is COMPLEX*16 array, dimension (LDA,N) On entry, the symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, the tridiagonal matrix is stored in the diagonals and the subdiagonals of A just below (or above) the diagonals, and L is stored below (or above) the subdiagonals, when UPLO is 'L' (or 'U').

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*IPIV**WORK*WORK is COMPLEX*16 array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*LWORK*LWORK is INTEGER The length of WORK. LWORK >=MAX(1,2*N). For optimum performance LWORK >= N*(1+NB), where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value.

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **131** of file **zsytrf_aa.f**.

## Author

Generated automatically by Doxygen for LAPACK from the source code.