# hesv - Man Page

{he,sy}sv: rook (v1)

## Synopsis

### Functions

subroutine chesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
CHESV computes the solution to system of linear equations A * X = B for HE matrices
subroutine csysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
CSYSV computes the solution to system of linear equations A * X = B for SY matrices
subroutine dsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
DSYSV computes the solution to system of linear equations A * X = B for SY matrices
subroutine ssysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
SSYSV computes the solution to system of linear equations A * X = B for SY matrices
subroutine zhesv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
ZHESV computes the solution to system of linear equations A * X = B for HE matrices
subroutine zsysv (uplo, n, nrhs, a, lda, ipiv, b, ldb, work, lwork, info)
ZSYSV computes the solution to system of linear equations A * X = B for SY matrices

## Function Documentation

### subroutine chesv (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( * ) work, integer lwork, integer info)

CHESV computes the solution to system of linear equations A * X = B for HE matrices

Purpose:

``` CHESV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
matrices.

The diagonal pivoting method is used to factor A as
A = U * D * U**H,  if UPLO = 'U', or
A = L * D * L**H,  if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is Hermitian and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then
used to solve the system of equations A * X = B.```
Parameters

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.```

N

```          N is INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.```

NRHS

```          NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.```

A

```          A is COMPLEX array, dimension (LDA,N)
On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced.  If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = 0, the block diagonal matrix D and the
multipliers used to obtain the factor U or L from the
factorization A = U*D*U**H or A = L*D*L**H as computed by
CHETRF.```

LDA

```          LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,N).```

IPIV

```          IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by CHETRF.  If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.```

B

```          B is COMPLEX array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

WORK

```          WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.```

LWORK

```          LWORK is INTEGER
The length of WORK.  LWORK >= 1, and for best performance
LWORK >= max(1,N*NB), where NB is the optimal blocksize for
CHETRF.
for LWORK < N, TRS will be done with Level BLAS 2
for LWORK >= N, TRS will be done with Level BLAS 3

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.```

INFO

```          INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero.  The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be computed.```
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 169 of file chesv.f.

### subroutine csysv (character uplo, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( * ) work, integer lwork, integer info)

CSYSV computes the solution to system of linear equations A * X = B for SY matrices

Purpose:

``` CSYSV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.

The diagonal pivoting method is used to factor A as
A = U * D * U**T,  if UPLO = 'U', or
A = L * D * L**T,  if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then
used to solve the system of equations A * X = B.```
Parameters

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.```

N

```          N is INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.```

NRHS

```          NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.```

A

```          A is COMPLEX array, dimension (LDA,N)
On entry, the symmetric matrix A.  If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced.  If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = 0, the block diagonal matrix D and the
multipliers used to obtain the factor U or L from the
factorization A = U*D*U**T or A = L*D*L**T as computed by
CSYTRF.```

LDA

```          LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,N).```

IPIV

```          IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by CSYTRF.  If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.```

B

```          B is COMPLEX array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

WORK

```          WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.```

LWORK

```          LWORK is INTEGER
The length of WORK.  LWORK >= 1, and for best performance
LWORK >= max(1,N*NB), where NB is the optimal blocksize for
CSYTRF.
for LWORK < N, TRS will be done with Level BLAS 2
for LWORK >= N, TRS will be done with Level BLAS 3

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.```

INFO

```          INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero.  The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be computed.```
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 169 of file csysv.f.

### subroutine dsysv (character uplo, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( * ) work, integer lwork, integer info)

DSYSV computes the solution to system of linear equations A * X = B for SY matrices

Purpose:

``` DSYSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.

The diagonal pivoting method is used to factor A as
A = U * D * U**T,  if UPLO = 'U', or
A = L * D * L**T,  if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then
used to solve the system of equations A * X = B.```
Parameters

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.```

N

```          N is INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.```

NRHS

```          NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.```

A

```          A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the symmetric matrix A.  If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced.  If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = 0, the block diagonal matrix D and the
multipliers used to obtain the factor U or L from the
factorization A = U*D*U**T or A = L*D*L**T as computed by
DSYTRF.```

LDA

```          LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,N).```

IPIV

```          IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by DSYTRF.  If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.```

B

```          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

WORK

```          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.```

LWORK

```          LWORK is INTEGER
The length of WORK.  LWORK >= 1, and for best performance
LWORK >= max(1,N*NB), where NB is the optimal blocksize for
DSYTRF.
for LWORK < N, TRS will be done with Level BLAS 2
for LWORK >= N, TRS will be done with Level BLAS 3

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.```

INFO

```          INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero.  The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be computed.```
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 169 of file dsysv.f.

### subroutine ssysv (character uplo, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, real, dimension( * ) work, integer lwork, integer info)

SSYSV computes the solution to system of linear equations A * X = B for SY matrices

Purpose:

``` SSYSV computes the solution to a real system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.

The diagonal pivoting method is used to factor A as
A = U * D * U**T,  if UPLO = 'U', or
A = L * D * L**T,  if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then
used to solve the system of equations A * X = B.```
Parameters

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.```

N

```          N is INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.```

NRHS

```          NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.```

A

```          A is REAL array, dimension (LDA,N)
On entry, the symmetric matrix A.  If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced.  If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = 0, the block diagonal matrix D and the
multipliers used to obtain the factor U or L from the
factorization A = U*D*U**T or A = L*D*L**T as computed by
SSYTRF.```

LDA

```          LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,N).```

IPIV

```          IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by SSYTRF.  If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.```

B

```          B is REAL array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

WORK

```          WORK is REAL array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.```

LWORK

```          LWORK is INTEGER
The length of WORK.  LWORK >= 1, and for best performance
LWORK >= max(1,N*NB), where NB is the optimal blocksize for
SSYTRF.
for LWORK < N, TRS will be done with Level BLAS 2
for LWORK >= N, TRS will be done with Level BLAS 3

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.```

INFO

```          INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero.  The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be computed.```
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 169 of file ssysv.f.

### subroutine zhesv (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) work, integer lwork, integer info)

ZHESV computes the solution to system of linear equations A * X = B for HE matrices

Purpose:

``` ZHESV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N Hermitian matrix and X and B are N-by-NRHS
matrices.

The diagonal pivoting method is used to factor A as
A = U * D * U**H,  if UPLO = 'U', or
A = L * D * L**H,  if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is Hermitian and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then
used to solve the system of equations A * X = B.```
Parameters

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.```

N

```          N is INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.```

NRHS

```          NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.```

A

```          A is COMPLEX*16 array, dimension (LDA,N)
On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced.  If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = 0, the block diagonal matrix D and the
multipliers used to obtain the factor U or L from the
factorization A = U*D*U**H or A = L*D*L**H as computed by
ZHETRF.```

LDA

```          LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,N).```

IPIV

```          IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by ZHETRF.  If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.```

B

```          B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

WORK

```          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.```

LWORK

```          LWORK is INTEGER
The length of WORK.  LWORK >= 1, and for best performance
LWORK >= max(1,N*NB), where NB is the optimal blocksize for
ZHETRF.
for LWORK < N, TRS will be done with Level BLAS 2
for LWORK >= N, TRS will be done with Level BLAS 3

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.```

INFO

```          INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero.  The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be computed.```
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 169 of file zhesv.f.

### subroutine zsysv (character uplo, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( * ) work, integer lwork, integer info)

ZSYSV computes the solution to system of linear equations A * X = B for SY matrices

Purpose:

``` ZSYSV computes the solution to a complex system of linear equations
A * X = B,
where A is an N-by-N symmetric matrix and X and B are N-by-NRHS
matrices.

The diagonal pivoting method is used to factor A as
A = U * D * U**T,  if UPLO = 'U', or
A = L * D * L**T,  if UPLO = 'L',
where U (or L) is a product of permutation and unit upper (lower)
triangular matrices, and D is symmetric and block diagonal with
1-by-1 and 2-by-2 diagonal blocks.  The factored form of A is then
used to solve the system of equations A * X = B.```
Parameters

UPLO

```          UPLO is CHARACTER*1
= 'U':  Upper triangle of A is stored;
= 'L':  Lower triangle of A is stored.```

N

```          N is INTEGER
The number of linear equations, i.e., the order of the
matrix A.  N >= 0.```

NRHS

```          NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B.  NRHS >= 0.```

A

```          A is COMPLEX*16 array, dimension (LDA,N)
On entry, the symmetric matrix A.  If UPLO = 'U', the leading
N-by-N upper triangular part of A contains the upper
triangular part of the matrix A, and the strictly lower
triangular part of A is not referenced.  If UPLO = 'L', the
leading N-by-N lower triangular part of A contains the lower
triangular part of the matrix A, and the strictly upper
triangular part of A is not referenced.

On exit, if INFO = 0, the block diagonal matrix D and the
multipliers used to obtain the factor U or L from the
factorization A = U*D*U**T or A = L*D*L**T as computed by
ZSYTRF.```

LDA

```          LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,N).```

IPIV

```          IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D, as
determined by ZSYTRF.  If IPIV(k) > 0, then rows and columns
k and IPIV(k) were interchanged, and D(k,k) is a 1-by-1
diagonal block.  If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0,
then rows and columns k-1 and -IPIV(k) were interchanged and
D(k-1:k,k-1:k) is a 2-by-2 diagonal block.  If UPLO = 'L' and
IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and
-IPIV(k) were interchanged and D(k:k+1,k:k+1) is a 2-by-2
diagonal block.```

B

```          B is COMPLEX*16 array, dimension (LDB,NRHS)
On entry, the N-by-NRHS right hand side matrix B.
On exit, if INFO = 0, the N-by-NRHS solution matrix X.```

LDB

```          LDB is INTEGER
The leading dimension of the array B.  LDB >= max(1,N).```

WORK

```          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.```

LWORK

```          LWORK is INTEGER
The length of WORK.  LWORK >= 1, and for best performance
LWORK >= max(1,N*NB), where NB is the optimal blocksize for
ZSYTRF.
for LWORK < N, TRS will be done with Level BLAS 2
for LWORK >= N, TRS will be done with Level BLAS 3

If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.```

INFO

```          INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
> 0: if INFO = i, D(i,i) is exactly zero.  The factorization
has been completed, but the block diagonal matrix D is
exactly singular, so the solution could not be computed.```
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 169 of file zsysv.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK