# hecon_rook - Man Page

{he,sy}con_rook: condition number estimate

## Synopsis

### Functions

subroutine **checon_rook** (uplo, n, a, lda, ipiv, anorm, rcond, work, info)

**CHECON_ROOK estimates the reciprocal of the condition number fort HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)**

subroutine **csycon_rook** (uplo, n, a, lda, ipiv, anorm, rcond, work, info)

**CSYCON_ROOK**

subroutine **dsycon_rook** (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

**DSYCON_ROOK**

subroutine **ssycon_rook** (uplo, n, a, lda, ipiv, anorm, rcond, work, iwork, info)

**SSYCON_ROOK**

subroutine **zhecon_rook** (uplo, n, a, lda, ipiv, anorm, rcond, work, info)

**ZHECON_ROOK estimates the reciprocal of the condition number fort HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)**

subroutine **zsycon_rook** (uplo, n, a, lda, ipiv, anorm, rcond, work, info)**ZSYCON_ROOK**

## Detailed Description

## Function Documentation

### subroutine checon_rook (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real anorm, real rcond, complex, dimension( * ) work, integer info)

**CHECON_ROOK estimates the reciprocal of the condition number fort HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)**

**Purpose:**

CHECON_ROOK estimates the reciprocal of the condition number of a complex Hermitian matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF_ROOK. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).

**Parameters***UPLO*UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H.

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is COMPLEX array, dimension (LDA,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CHETRF_ROOK.

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*IPIV*IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CHETRF_ROOK.

*ANORM*ANORM is REAL The 1-norm of the original matrix A.

*RCOND*RCOND is REAL The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine.

*WORK*WORK is COMPLEX array, dimension (2*N)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Contributors:**

December 2016, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester

Definition at line **137** of file **checon_rook.f**.

### subroutine csycon_rook (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real anorm, real rcond, complex, dimension( * ) work, integer info)

**CSYCON_ROOK**

**Purpose:**

CSYCON_ROOK estimates the reciprocal of the condition number (in the 1-norm) of a complex symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by CSYTRF_ROOK. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).

**Parameters***UPLO*UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T.

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is COMPLEX array, dimension (LDA,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CSYTRF_ROOK.

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*IPIV*IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CSYTRF_ROOK.

*ANORM*ANORM is REAL The 1-norm of the original matrix A.

*RCOND*RCOND is REAL The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine.

*WORK*WORK is COMPLEX array, dimension (2*N)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Contributors:**

April 2012, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester

Definition at line **137** of file **csycon_rook.f**.

### subroutine dsycon_rook (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision anorm, double precision rcond, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info)

**DSYCON_ROOK**

**Purpose:**

DSYCON_ROOK estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by DSYTRF_ROOK. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).

**Parameters***UPLO*UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T.

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is DOUBLE PRECISION array, dimension (LDA,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by DSYTRF_ROOK.

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*IPIV*IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by DSYTRF_ROOK.

*ANORM*ANORM is DOUBLE PRECISION The 1-norm of the original matrix A.

*RCOND*RCOND is DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine.

*WORK*WORK is DOUBLE PRECISION array, dimension (2*N)

*IWORK*IWORK is INTEGER array, dimension (N)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Contributors:**

April 2012, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester

Definition at line **142** of file **dsycon_rook.f**.

### subroutine ssycon_rook (character uplo, integer n, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, real anorm, real rcond, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)

**SSYCON_ROOK**

**Purpose:**

SSYCON_ROOK estimates the reciprocal of the condition number (in the 1-norm) of a real symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by SSYTRF_ROOK. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).

**Parameters***UPLO*UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**T; = 'L': Lower triangular, form is A = L*D*L**T.

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is REAL array, dimension (LDA,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by SSYTRF_ROOK.

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*IPIV*IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by SSYTRF_ROOK.

*ANORM*ANORM is REAL The 1-norm of the original matrix A.

*RCOND*RCOND is REAL The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine.

*WORK*WORK is REAL array, dimension (2*N)

*IWORK*IWORK is INTEGER array, dimension (N)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Contributors:**

December 2016, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester

Definition at line **142** of file **ssycon_rook.f**.

### subroutine zhecon_rook (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision anorm, double precision rcond, complex*16, dimension( * ) work, integer info)

**ZHECON_ROOK estimates the reciprocal of the condition number fort HE matrices using factorization obtained with one of the bounded diagonal pivoting methods (max 2 interchanges)**

**Purpose:**

ZHECON_ROOK estimates the reciprocal of the condition number of a complex Hermitian matrix A using the factorization A = U*D*U**H or A = L*D*L**H computed by CHETRF_ROOK. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).

**Parameters***UPLO*UPLO is CHARACTER*1 Specifies whether the details of the factorization are stored as an upper or lower triangular matrix. = 'U': Upper triangular, form is A = U*D*U**H; = 'L': Lower triangular, form is A = L*D*L**H.

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is COMPLEX*16 array, dimension (LDA,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by CHETRF_ROOK.

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*IPIV*IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by CHETRF_ROOK.

*ANORM*ANORM is DOUBLE PRECISION The 1-norm of the original matrix A.

*RCOND*RCOND is DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine.

*WORK*WORK is COMPLEX*16 array, dimension (2*N)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Contributors:**

June 2017, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester

Definition at line **137** of file **zhecon_rook.f**.

### subroutine zsycon_rook (character uplo, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, double precision anorm, double precision rcond, complex*16, dimension( * ) work, integer info)

**ZSYCON_ROOK**

**Purpose:**

ZSYCON_ROOK estimates the reciprocal of the condition number (in the 1-norm) of a complex symmetric matrix A using the factorization A = U*D*U**T or A = L*D*L**T computed by ZSYTRF_ROOK. An estimate is obtained for norm(inv(A)), and the reciprocal of the condition number is computed as RCOND = 1 / (ANORM * norm(inv(A))).

**Parameters***UPLO**N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is COMPLEX*16 array, dimension (LDA,N) The block diagonal matrix D and the multipliers used to obtain the factor U or L as computed by ZSYTRF_ROOK.

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*IPIV*IPIV is INTEGER array, dimension (N) Details of the interchanges and the block structure of D as determined by ZSYTRF_ROOK.

*ANORM*ANORM is DOUBLE PRECISION The 1-norm of the original matrix A.

*RCOND*RCOND is DOUBLE PRECISION The reciprocal of the condition number of the matrix A, computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is an estimate of the 1-norm of inv(A) computed in this routine.

*WORK*WORK is COMPLEX*16 array, dimension (2*N)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Contributors:**

December 2016, Igor Kozachenko, Computer Science Division, University of California, Berkeley September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, School of Mathematics, University of Manchester

Definition at line **137** of file **zsycon_rook.f**.

## Author

Generated automatically by Doxygen for LAPACK from the source code.