Sponsor:

Your company here, and a link to your site. Click to find out more.

getrf - Man Page

getrf: triangular factor

Synopsis

Functions

subroutine cgetrf (m, n, a, lda, ipiv, info)
CGETRF
subroutine dgetrf (m, n, a, lda, ipiv, info)
DGETRF
subroutine sgetrf (m, n, a, lda, ipiv, info)
SGETRF
subroutine zgetrf (m, n, a, lda, ipiv, info)
ZGETRF

Detailed Description

Function Documentation

subroutine cgetrf (integer m, integer n, complex, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, integer info)

CGETRF  

Purpose:

 CGETRF computes an LU factorization of a general M-by-N matrix A
 using partial pivoting with row interchanges.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n).

 This is the right-looking Level 3 BLAS version of the algorithm.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

IPIV

          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
                has been completed, but the factor U is exactly
                singular, and division by zero will occur if it is used
                to solve a system of equations.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file cgetrf.f.

subroutine dgetrf (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, integer info)

DGETRF  

Purpose:

 DGETRF computes an LU factorization of a general M-by-N matrix A
 using partial pivoting with row interchanges.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n).

 This is the right-looking Level 3 BLAS version of the algorithm.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

IPIV

          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
                has been completed, but the factor U is exactly
                singular, and division by zero will occur if it is used
                to solve a system of equations.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file dgetrf.f.

subroutine sgetrf (integer m, integer n, real, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, integer info)

SGETRF  

Purpose:

 SGETRF computes an LU factorization of a general M-by-N matrix A
 using partial pivoting with row interchanges.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n).

 This is the right-looking Level 3 BLAS version of the algorithm.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is REAL array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

IPIV

          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
                has been completed, but the factor U is exactly
                singular, and division by zero will occur if it is used
                to solve a system of equations.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file sgetrf.f.

subroutine zgetrf (integer m, integer n, complex*16, dimension( lda, * ) a, integer lda, integer, dimension( * ) ipiv, integer info)

ZGETRF  

Purpose:

 ZGETRF computes an LU factorization of a general M-by-N matrix A
 using partial pivoting with row interchanges.

 The factorization has the form
    A = P * L * U
 where P is a permutation matrix, L is lower triangular with unit
 diagonal elements (lower trapezoidal if m > n), and U is upper
 triangular (upper trapezoidal if m < n).

 This is the right-looking Level 3 BLAS version of the algorithm.
Parameters

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

N

          N is INTEGER
          The number of columns of the matrix A.  N >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          On entry, the M-by-N matrix to be factored.
          On exit, the factors L and U from the factorization
          A = P*L*U; the unit diagonal elements of L are not stored.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,M).

IPIV

          IPIV is INTEGER array, dimension (min(M,N))
          The pivot indices; for 1 <= i <= min(M,N), row i of the
          matrix was interchanged with row IPIV(i).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, U(i,i) is exactly zero. The factorization
                has been completed, but the factor U is exactly
                singular, and division by zero will occur if it is used
                to solve a system of equations.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 107 of file zgetrf.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK