Sponsor:

Your company here, and a link to your site. Click to find out more.

gerfs - Man Page

gerfs: iterative refinement

Synopsis

Functions

subroutine cgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
CGERFS
subroutine dgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
DGERFS
subroutine sgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, iwork, info)
SGERFS
subroutine zgerfs (trans, n, nrhs, a, lda, af, ldaf, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)
ZGERFS

Detailed Description

Function Documentation

subroutine cgerfs (character trans, integer n, integer nrhs, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)

CGERFS  

Purpose:

 CGERFS improves the computed solution to a system of linear
 equations and provides error bounds and backward error estimates for
 the solution.
Parameters

TRANS

          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose)

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
          The original N-by-N matrix A.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is COMPLEX array, dimension (LDAF,N)
          The factors L and U from the factorization A = P*L*U
          as computed by CGETRF.

LDAF

          LDAF is INTEGER
          The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          The pivot indices from CGETRF; for 1<=i<=N, row i of the
          matrix was interchanged with row IPIV(i).

B

          B is COMPLEX array, dimension (LDB,NRHS)
          The right hand side matrix B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is COMPLEX array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by CGETRS.
          On exit, the improved solution matrix X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

FERR

          FERR is REAL array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.

BERR

          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is COMPLEX array, dimension (2*N)

RWORK

          RWORK is REAL array, dimension (N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Internal Parameters:

  ITMAX is the maximum number of steps of iterative refinement.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 184 of file cgerfs.f.

subroutine dgerfs (character trans, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info)

DGERFS  

Purpose:

 DGERFS improves the computed solution to a system of linear
 equations and provides error bounds and backward error estimates for
 the solution.
Parameters

TRANS

          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          The original N-by-N matrix A.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is DOUBLE PRECISION array, dimension (LDAF,N)
          The factors L and U from the factorization A = P*L*U
          as computed by DGETRF.

LDAF

          LDAF is INTEGER
          The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          The pivot indices from DGETRF; for 1<=i<=N, row i of the
          matrix was interchanged with row IPIV(i).

B

          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          The right hand side matrix B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by DGETRS.
          On exit, the improved solution matrix X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

FERR

          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.

BERR

          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is DOUBLE PRECISION array, dimension (3*N)

IWORK

          IWORK is INTEGER array, dimension (N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Internal Parameters:

  ITMAX is the maximum number of steps of iterative refinement.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 183 of file dgerfs.f.

subroutine sgerfs (character trans, integer n, integer nrhs, real, dimension( lda, * ) a, integer lda, real, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, real, dimension( ldb, * ) b, integer ldb, real, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, real, dimension( * ) work, integer, dimension( * ) iwork, integer info)

SGERFS  

Purpose:

 SGERFS improves the computed solution to a system of linear
 equations and provides error bounds and backward error estimates for
 the solution.
Parameters

TRANS

          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.

A

          A is REAL array, dimension (LDA,N)
          The original N-by-N matrix A.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is REAL array, dimension (LDAF,N)
          The factors L and U from the factorization A = P*L*U
          as computed by SGETRF.

LDAF

          LDAF is INTEGER
          The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          The pivot indices from SGETRF; for 1<=i<=N, row i of the
          matrix was interchanged with row IPIV(i).

B

          B is REAL array, dimension (LDB,NRHS)
          The right hand side matrix B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is REAL array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by SGETRS.
          On exit, the improved solution matrix X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

FERR

          FERR is REAL array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.

BERR

          BERR is REAL array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is REAL array, dimension (3*N)

IWORK

          IWORK is INTEGER array, dimension (N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Internal Parameters:

  ITMAX is the maximum number of steps of iterative refinement.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 183 of file sgerfs.f.

subroutine zgerfs (character trans, integer n, integer nrhs, complex*16, dimension( lda, * ) a, integer lda, complex*16, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex*16, dimension( ldb, * ) b, integer ldb, complex*16, dimension( ldx, * ) x, integer ldx, double precision, dimension( * ) ferr, double precision, dimension( * ) berr, complex*16, dimension( * ) work, double precision, dimension( * ) rwork, integer info)

ZGERFS  

Purpose:

 ZGERFS improves the computed solution to a system of linear
 equations and provides error bounds and backward error estimates for
 the solution.
Parameters

TRANS

          TRANS is CHARACTER*1
          Specifies the form of the system of equations:
          = 'N':  A * X = B     (No transpose)
          = 'T':  A**T * X = B  (Transpose)
          = 'C':  A**H * X = B  (Conjugate transpose)

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X.  NRHS >= 0.

A

          A is COMPLEX*16 array, dimension (LDA,N)
          The original N-by-N matrix A.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is COMPLEX*16 array, dimension (LDAF,N)
          The factors L and U from the factorization A = P*L*U
          as computed by ZGETRF.

LDAF

          LDAF is INTEGER
          The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
          The pivot indices from ZGETRF; for 1<=i<=N, row i of the
          matrix was interchanged with row IPIV(i).

B

          B is COMPLEX*16 array, dimension (LDB,NRHS)
          The right hand side matrix B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is COMPLEX*16 array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by ZGETRS.
          On exit, the improved solution matrix X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

FERR

          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The estimated forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).  The estimate is as reliable as
          the estimate for RCOND, and is almost always a slight
          overestimate of the true error.

BERR

          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is COMPLEX*16 array, dimension (2*N)

RWORK

          RWORK is DOUBLE PRECISION array, dimension (N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Internal Parameters:

  ITMAX is the maximum number of steps of iterative refinement.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 184 of file zgerfs.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Info

Tue Nov 28 2023 12:08:43 Version 3.12.0 LAPACK