# gbequb - Man Page

gbequb: equilibration, power of 2

## Synopsis

### Functions

subroutine **cgbequb** (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)**CGBEQUB**

subroutine **dgbequb** (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)**DGBEQUB**

subroutine **sgbequb** (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)**SGBEQUB**

subroutine **zgbequb** (m, n, kl, ku, ab, ldab, r, c, rowcnd, colcnd, amax, info)**ZGBEQUB**

## Detailed Description

## Function Documentation

### subroutine cgbequb (integer m, integer n, integer kl, integer ku, complex, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) r, real, dimension( * ) c, real rowcnd, real colcnd, real amax, integer info)

**CGBEQUB**

**Purpose:**

CGBEQUB computes row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition number. R returns the row scale factors and C the column scale factors, chosen to try to make the largest element in each row and column of the matrix B with elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most the radix. R(i) and C(j) are restricted to be a power of the radix between SMLNUM = smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice. This routine differs from CGEEQU by restricting the scaling factors to a power of the radix. Barring over- and underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer approximately 1 but lie between sqrt(radix) and 1/sqrt(radix).

**Parameters***M*M is INTEGER The number of rows of the matrix A. M >= 0.

*N*N is INTEGER The number of columns of the matrix A. N >= 0.

*KL*KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.

*KU*KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.

*AB*AB is COMPLEX array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

*LDAB*LDAB is INTEGER The leading dimension of the array A. LDAB >= max(1,M).

*R*R is REAL array, dimension (M) If INFO = 0 or INFO > M, R contains the row scale factors for A.

*C*C is REAL array, dimension (N) If INFO = 0, C contains the column scale factors for A.

*ROWCND*ROWCND is REAL If INFO = 0 or INFO > M, ROWCND contains the ratio of the smallest R(i) to the largest R(i). If ROWCND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by R.

*COLCND*COLCND is REAL If INFO = 0, COLCND contains the ratio of the smallest C(i) to the largest C(i). If COLCND >= 0.1, it is not worth scaling by C.

*AMAX*AMAX is REAL Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= M: the i-th row of A is exactly zero > M: the (i-M)-th column of A is exactly zero

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **159** of file **cgbequb.f**.

### subroutine dgbequb (integer m, integer n, integer kl, integer ku, double precision, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) r, double precision, dimension( * ) c, double precision rowcnd, double precision colcnd, double precision amax, integer info)

**DGBEQUB**

**Purpose:**

DGBEQUB computes row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition number. R returns the row scale factors and C the column scale factors, chosen to try to make the largest element in each row and column of the matrix B with elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most the radix. R(i) and C(j) are restricted to be a power of the radix between SMLNUM = smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice. This routine differs from DGEEQU by restricting the scaling factors to a power of the radix. Barring over- and underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer approximately 1 but lie between sqrt(radix) and 1/sqrt(radix).

**Parameters***M*M is INTEGER The number of rows of the matrix A. M >= 0.

*N*N is INTEGER The number of columns of the matrix A. N >= 0.

*KL*KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.

*KU*KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.

*AB*AB is DOUBLE PRECISION array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

*LDAB*LDAB is INTEGER The leading dimension of the array A. LDAB >= max(1,M).

*R*R is DOUBLE PRECISION array, dimension (M) If INFO = 0 or INFO > M, R contains the row scale factors for A.

*C*C is DOUBLE PRECISION array, dimension (N) If INFO = 0, C contains the column scale factors for A.

*ROWCND*ROWCND is DOUBLE PRECISION If INFO = 0 or INFO > M, ROWCND contains the ratio of the smallest R(i) to the largest R(i). If ROWCND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by R.

*COLCND*COLCND is DOUBLE PRECISION If INFO = 0, COLCND contains the ratio of the smallest C(i) to the largest C(i). If COLCND >= 0.1, it is not worth scaling by C.

*AMAX*AMAX is DOUBLE PRECISION Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= M: the i-th row of A is exactly zero > M: the (i-M)-th column of A is exactly zero

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **158** of file **dgbequb.f**.

### subroutine sgbequb (integer m, integer n, integer kl, integer ku, real, dimension( ldab, * ) ab, integer ldab, real, dimension( * ) r, real, dimension( * ) c, real rowcnd, real colcnd, real amax, integer info)

**SGBEQUB**

**Purpose:**

SGBEQUB computes row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition number. R returns the row scale factors and C the column scale factors, chosen to try to make the largest element in each row and column of the matrix B with elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most the radix. R(i) and C(j) are restricted to be a power of the radix between SMLNUM = smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice. This routine differs from SGEEQU by restricting the scaling factors to a power of the radix. Barring over- and underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer approximately 1 but lie between sqrt(radix) and 1/sqrt(radix).

**Parameters***M*M is INTEGER The number of rows of the matrix A. M >= 0.

*N*N is INTEGER The number of columns of the matrix A. N >= 0.

*KL*KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.

*KU*KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.

*AB*AB is REAL array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

*LDAB*LDAB is INTEGER The leading dimension of the array A. LDAB >= max(1,M).

*R*R is REAL array, dimension (M) If INFO = 0 or INFO > M, R contains the row scale factors for A.

*C*C is REAL array, dimension (N) If INFO = 0, C contains the column scale factors for A.

*ROWCND*ROWCND is REAL If INFO = 0 or INFO > M, ROWCND contains the ratio of the smallest R(i) to the largest R(i). If ROWCND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by R.

*COLCND*COLCND is REAL If INFO = 0, COLCND contains the ratio of the smallest C(i) to the largest C(i). If COLCND >= 0.1, it is not worth scaling by C.

*AMAX*AMAX is REAL Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= M: the i-th row of A is exactly zero > M: the (i-M)-th column of A is exactly zero

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **158** of file **sgbequb.f**.

### subroutine zgbequb (integer m, integer n, integer kl, integer ku, complex*16, dimension( ldab, * ) ab, integer ldab, double precision, dimension( * ) r, double precision, dimension( * ) c, double precision rowcnd, double precision colcnd, double precision amax, integer info)

**ZGBEQUB**

**Purpose:**

ZGBEQUB computes row and column scalings intended to equilibrate an M-by-N matrix A and reduce its condition number. R returns the row scale factors and C the column scale factors, chosen to try to make the largest element in each row and column of the matrix B with elements B(i,j)=R(i)*A(i,j)*C(j) have an absolute value of at most the radix. R(i) and C(j) are restricted to be a power of the radix between SMLNUM = smallest safe number and BIGNUM = largest safe number. Use of these scaling factors is not guaranteed to reduce the condition number of A but works well in practice. This routine differs from ZGEEQU by restricting the scaling factors to a power of the radix. Barring over- and underflow, scaling by these factors introduces no additional rounding errors. However, the scaled entries' magnitudes are no longer approximately 1 but lie between sqrt(radix) and 1/sqrt(radix).

**Parameters***M*M is INTEGER The number of rows of the matrix A. M >= 0.

*N*N is INTEGER The number of columns of the matrix A. N >= 0.

*KL*KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.

*KU*KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.

*AB*AB is COMPLEX*16 array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+kl)

*LDAB*LDAB is INTEGER The leading dimension of the array A. LDAB >= max(1,M).

*R*R is DOUBLE PRECISION array, dimension (M) If INFO = 0 or INFO > M, R contains the row scale factors for A.

*C*C is DOUBLE PRECISION array, dimension (N) If INFO = 0, C contains the column scale factors for A.

*ROWCND*ROWCND is DOUBLE PRECISION If INFO = 0 or INFO > M, ROWCND contains the ratio of the smallest R(i) to the largest R(i). If ROWCND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by R.

*COLCND*COLCND is DOUBLE PRECISION If INFO = 0, COLCND contains the ratio of the smallest C(i) to the largest C(i). If COLCND >= 0.1, it is not worth scaling by C.

*AMAX*AMAX is DOUBLE PRECISION Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled.

*INFO***Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **159** of file **zgbequb.f**.

## Author

Generated automatically by Doxygen for LAPACK from the source code.