dtzrzf.f - Man Page
SRC/dtzrzf.f
Synopsis
Functions/Subroutines
subroutine dtzrzf (m, n, a, lda, tau, work, lwork, info)
DTZRZF
Function/Subroutine Documentation
subroutine dtzrzf (integer m, integer n, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( * ) work, integer lwork, integer info)
DTZRZF
Purpose:
DTZRZF reduces the M-by-N ( M<=N ) real upper trapezoidal matrix A to upper triangular form by means of orthogonal transformations. The upper trapezoidal matrix A is factored as A = ( R 0 ) * Z, where Z is an N-by-N orthogonal matrix and R is an M-by-M upper triangular matrix.
- Parameters
M
M is INTEGER The number of rows of the matrix A. M >= 0.
N
N is INTEGER The number of columns of the matrix A. N >= M.
A
A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the leading M-by-N upper trapezoidal part of the array A must contain the matrix to be factorized. On exit, the leading M-by-M upper triangular part of A contains the upper triangular matrix R, and elements M+1 to N of the first M rows of A, with the array TAU, represent the orthogonal matrix Z as a product of M elementary reflectors.
LDA
LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).
TAU
TAU is DOUBLE PRECISION array, dimension (M) The scalar factors of the elementary reflectors.
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. LWORK >= max(1,M). For optimum performance LWORK >= M*NB, where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
A. Petitet, Computer Science Dept., Univ. of Tenn., Knoxville, USA
Further Details:
The N-by-N matrix Z can be computed by Z = Z(1)*Z(2)* ... *Z(M) where each N-by-N Z(k) is given by Z(k) = I - tau(k)*v(k)*v(k)**T with v(k) is the kth row vector of the M-by-N matrix V = ( I A(:,M+1:N) ) I is the M-by-M identity matrix, A(:,M+1:N) is the output stored in A on exit from DTZRZF, and tau(k) is the kth element of the array TAU.
Definition at line 150 of file dtzrzf.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page dtzrzf(3) is an alias of dtzrzf.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK