dtrsm.f - Man Page
BLAS/SRC/dtrsm.f
Synopsis
Functions/Subroutines
subroutine dtrsm (side, uplo, transa, diag, m, n, alpha, a, lda, b, ldb)
DTRSM
Function/Subroutine Documentation
subroutine dtrsm (character side, character uplo, character transa, character diag, integer m, integer n, double precision alpha, double precision, dimension(lda,*) a, integer lda, double precision, dimension(ldb,*) b, integer ldb)
DTRSM
Purpose:
DTRSM solves one of the matrix equations op( A )*X = alpha*B, or X*op( A ) = alpha*B, where alpha is a scalar, X and B are m by n matrices, A is a unit, or non-unit, upper or lower triangular matrix and op( A ) is one of op( A ) = A or op( A ) = A**T. The matrix X is overwritten on B.
- Parameters
SIDE
SIDE is CHARACTER*1 On entry, SIDE specifies whether op( A ) appears on the left or right of X as follows: SIDE = 'L' or 'l' op( A )*X = alpha*B. SIDE = 'R' or 'r' X*op( A ) = alpha*B.
UPLO
UPLO is CHARACTER*1 On entry, UPLO specifies whether the matrix A is an upper or lower triangular matrix as follows: UPLO = 'U' or 'u' A is an upper triangular matrix. UPLO = 'L' or 'l' A is a lower triangular matrix.
TRANSA
TRANSA is CHARACTER*1 On entry, TRANSA specifies the form of op( A ) to be used in the matrix multiplication as follows: TRANSA = 'N' or 'n' op( A ) = A. TRANSA = 'T' or 't' op( A ) = A**T. TRANSA = 'C' or 'c' op( A ) = A**T.
DIAG
DIAG is CHARACTER*1 On entry, DIAG specifies whether or not A is unit triangular as follows: DIAG = 'U' or 'u' A is assumed to be unit triangular. DIAG = 'N' or 'n' A is not assumed to be unit triangular.
M
M is INTEGER On entry, M specifies the number of rows of B. M must be at least zero.
N
N is INTEGER On entry, N specifies the number of columns of B. N must be at least zero.
ALPHA
ALPHA is DOUBLE PRECISION. On entry, ALPHA specifies the scalar alpha. When alpha is zero then A is not referenced and B need not be set before entry.
A
A is DOUBLE PRECISION array, dimension ( LDA, k ), where k is m when SIDE = 'L' or 'l' and k is n when SIDE = 'R' or 'r'. Before entry with UPLO = 'U' or 'u', the leading k by k upper triangular part of the array A must contain the upper triangular matrix and the strictly lower triangular part of A is not referenced. Before entry with UPLO = 'L' or 'l', the leading k by k lower triangular part of the array A must contain the lower triangular matrix and the strictly upper triangular part of A is not referenced. Note that when DIAG = 'U' or 'u', the diagonal elements of A are not referenced either, but are assumed to be unity.
LDA
LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), when SIDE = 'R' or 'r' then LDA must be at least max( 1, n ).
B
B is DOUBLE PRECISION array, dimension ( LDB, N ) Before entry, the leading m by n part of the array B must contain the right-hand side matrix B, and on exit is overwritten by the solution matrix X.
LDB
LDB is INTEGER On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ).
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd.
Definition at line 180 of file dtrsm.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page dtrsm(3) is an alias of dtrsm.f(3).
Tue Nov 28 2023 12:08:41 Version 3.12.0 LAPACK