dtptri.f man page

dtptri.f —

Synopsis

Functions/Subroutines

subroutine dtptri (UPLO, DIAG, N, AP, INFO)
DTPTRI

Function/Subroutine Documentation

subroutine dtptri (characterUPLO, characterDIAG, integerN, double precision, dimension( * )AP, integerINFO)

DTPTRI  

Purpose:

 DTPTRI computes the inverse of a real upper or lower triangular
 matrix A stored in packed format.
Parameters:

UPLO

          UPLO is CHARACTER*1
          = 'U':  A is upper triangular;
          = 'L':  A is lower triangular.

DIAG

          DIAG is CHARACTER*1
          = 'N':  A is non-unit triangular;
          = 'U':  A is unit triangular.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangular matrix A, stored
          columnwise in a linear array.  The j-th column of A is stored
          in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
          See below for further details.
          On exit, the (triangular) inverse of the original matrix, in
          the same packed storage format.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular
                matrix is singular and its inverse can not be computed.
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Further Details:

  A triangular matrix A can be transferred to packed storage using one
  of the following program segments:

  UPLO = 'U':                      UPLO = 'L':

        JC = 1                           JC = 1
        DO 2 J = 1, N                    DO 2 J = 1, N
           DO 1 I = 1, J                    DO 1 I = J, N
              AP(JC+I-1) = A(I,J)              AP(JC+I-J) = A(I,J)
      1    CONTINUE                    1    CONTINUE
           JC = JC + J                      JC = JC + N - J + 1
      2 CONTINUE                       2 CONTINUE

Definition at line 118 of file dtptri.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

dtptri(3) is an alias of dtptri.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK