dtprfb.f - Man Page
SRC/dtprfb.f
Synopsis
Functions/Subroutines
subroutine dtprfb (side, trans, direct, storev, m, n, k, l, v, ldv, t, ldt, a, lda, b, ldb, work, ldwork)
DTPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which is composed of two blocks.
Function/Subroutine Documentation
subroutine dtprfb (character side, character trans, character direct, character storev, integer m, integer n, integer k, integer l, double precision, dimension( ldv, * ) v, integer ldv, double precision, dimension( ldt, * ) t, integer ldt, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision, dimension( ldwork, * ) work, integer ldwork)
DTPRFB applies a real 'triangular-pentagonal' block reflector to a real matrix, which is composed of two blocks.
Purpose:
DTPRFB applies a real 'triangular-pentagonal' block reflector H or its transpose H**T to a real matrix C, which is composed of two blocks A and B, either from the left or right.
- Parameters
SIDE
SIDE is CHARACTER*1 = 'L': apply H or H**T from the Left = 'R': apply H or H**T from the Right
TRANS
TRANS is CHARACTER*1 = 'N': apply H (No transpose) = 'T': apply H**T (Transpose)
DIRECT
DIRECT is CHARACTER*1 Indicates how H is formed from a product of elementary reflectors = 'F': H = H(1) H(2) . . . H(k) (Forward) = 'B': H = H(k) . . . H(2) H(1) (Backward)
STOREV
STOREV is CHARACTER*1 Indicates how the vectors which define the elementary reflectors are stored: = 'C': Columns = 'R': Rows
M
M is INTEGER The number of rows of the matrix B. M >= 0.
N
N is INTEGER The number of columns of the matrix B. N >= 0.
K
K is INTEGER The order of the matrix T, i.e. the number of elementary reflectors whose product defines the block reflector. K >= 0.
L
L is INTEGER The order of the trapezoidal part of V. K >= L >= 0. See Further Details.
V
V is DOUBLE PRECISION array, dimension (LDV,K) if STOREV = 'C' (LDV,M) if STOREV = 'R' and SIDE = 'L' (LDV,N) if STOREV = 'R' and SIDE = 'R' The pentagonal matrix V, which contains the elementary reflectors H(1), H(2), ..., H(K). See Further Details.
LDV
LDV is INTEGER The leading dimension of the array V. If STOREV = 'C' and SIDE = 'L', LDV >= max(1,M); if STOREV = 'C' and SIDE = 'R', LDV >= max(1,N); if STOREV = 'R', LDV >= K.
T
T is DOUBLE PRECISION array, dimension (LDT,K) The triangular K-by-K matrix T in the representation of the block reflector.
LDT
LDT is INTEGER The leading dimension of the array T. LDT >= K.
A
A is DOUBLE PRECISION array, dimension (LDA,N) if SIDE = 'L' or (LDA,K) if SIDE = 'R' On entry, the K-by-N or M-by-K matrix A. On exit, A is overwritten by the corresponding block of H*C or H**T*C or C*H or C*H**T. See Further Details.
LDA
LDA is INTEGER The leading dimension of the array A. If SIDE = 'L', LDA >= max(1,K); If SIDE = 'R', LDA >= max(1,M).
B
B is DOUBLE PRECISION array, dimension (LDB,N) On entry, the M-by-N matrix B. On exit, B is overwritten by the corresponding block of H*C or H**T*C or C*H or C*H**T. See Further Details.
LDB
LDB is INTEGER The leading dimension of the array B. LDB >= max(1,M).
WORK
WORK is DOUBLE PRECISION array, dimension (LDWORK,N) if SIDE = 'L', (LDWORK,K) if SIDE = 'R'.
LDWORK
LDWORK is INTEGER The leading dimension of the array WORK. If SIDE = 'L', LDWORK >= K; if SIDE = 'R', LDWORK >= M.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Further Details:
The matrix C is a composite matrix formed from blocks A and B. The block B is of size M-by-N; if SIDE = 'R', A is of size M-by-K, and if SIDE = 'L', A is of size K-by-N. If SIDE = 'R' and DIRECT = 'F', C = [A B]. If SIDE = 'L' and DIRECT = 'F', C = [A] [B]. If SIDE = 'R' and DIRECT = 'B', C = [B A]. If SIDE = 'L' and DIRECT = 'B', C = [B] [A]. The pentagonal matrix V is composed of a rectangular block V1 and a trapezoidal block V2. The size of the trapezoidal block is determined by the parameter L, where 0<=L<=K. If L=K, the V2 block of V is triangular; if L=0, there is no trapezoidal block, thus V = V1 is rectangular. If DIRECT = 'F' and STOREV = 'C': V = [V1] [V2] - V2 is upper trapezoidal (first L rows of K-by-K upper triangular) If DIRECT = 'F' and STOREV = 'R': V = [V1 V2] - V2 is lower trapezoidal (first L columns of K-by-K lower triangular) If DIRECT = 'B' and STOREV = 'C': V = [V2] [V1] - V2 is lower trapezoidal (last L rows of K-by-K lower triangular) If DIRECT = 'B' and STOREV = 'R': V = [V2 V1] - V2 is upper trapezoidal (last L columns of K-by-K upper triangular) If STOREV = 'C' and SIDE = 'L', V is M-by-K with V2 L-by-K. If STOREV = 'C' and SIDE = 'R', V is N-by-K with V2 L-by-K. If STOREV = 'R' and SIDE = 'L', V is K-by-M with V2 K-by-L. If STOREV = 'R' and SIDE = 'R', V is K-by-N with V2 K-by-L.
Definition at line 249 of file dtprfb.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page dtprfb(3) is an alias of dtprfb.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK