dtgsja.f - Man Page

SRC/dtgsja.f

Synopsis

Functions/Subroutines

subroutine dtgsja (jobu, jobv, jobq, m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle, info)
DTGSJA

Function/Subroutine Documentation

subroutine dtgsja (character jobu, character jobv, character jobq, integer m, integer p, integer n, integer k, integer l, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, double precision tola, double precision tolb, double precision, dimension( * ) alpha, double precision, dimension( * ) beta, double precision, dimension( ldu, * ) u, integer ldu, double precision, dimension( ldv, * ) v, integer ldv, double precision, dimension( ldq, * ) q, integer ldq, double precision, dimension( * ) work, integer ncycle, integer info)

DTGSJA  

Purpose:

 DTGSJA computes the generalized singular value decomposition (GSVD)
 of two real upper triangular (or trapezoidal) matrices A and B.

 On entry, it is assumed that matrices A and B have the following
 forms, which may be obtained by the preprocessing subroutine DGGSVP
 from a general M-by-N matrix A and P-by-N matrix B:

              N-K-L  K    L
    A =    K ( 0    A12  A13 ) if M-K-L >= 0;
           L ( 0     0   A23 )
       M-K-L ( 0     0    0  )

            N-K-L  K    L
    A =  K ( 0    A12  A13 ) if M-K-L < 0;
       M-K ( 0     0   A23 )

            N-K-L  K    L
    B =  L ( 0     0   B13 )
       P-L ( 0     0    0  )

 where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
 upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
 otherwise A23 is (M-K)-by-L upper trapezoidal.

 On exit,

        U**T *A*Q = D1*( 0 R ),    V**T *B*Q = D2*( 0 R ),

 where U, V and Q are orthogonal matrices.
 R is a nonsingular upper triangular matrix, and D1 and D2 are
 “diagonal” matrices, which are of the following structures:

 If M-K-L >= 0,

                     K  L
        D1 =     K ( I  0 )
                 L ( 0  C )
             M-K-L ( 0  0 )

                   K  L
        D2 = L   ( 0  S )
             P-L ( 0  0 )

                N-K-L  K    L
   ( 0 R ) = K (  0   R11  R12 ) K
             L (  0    0   R22 ) L

 where

   C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
   S = diag( BETA(K+1),  ... , BETA(K+L) ),
   C**2 + S**2 = I.

   R is stored in A(1:K+L,N-K-L+1:N) on exit.

 If M-K-L < 0,

                K M-K K+L-M
     D1 =   K ( I  0    0   )
          M-K ( 0  C    0   )

                  K M-K K+L-M
     D2 =   M-K ( 0  S    0   )
          K+L-M ( 0  0    I   )
            P-L ( 0  0    0   )

                N-K-L  K   M-K  K+L-M
 ( 0 R ) =    K ( 0    R11  R12  R13  )
           M-K ( 0     0   R22  R23  )
         K+L-M ( 0     0    0   R33  )

 where
 C = diag( ALPHA(K+1), ... , ALPHA(M) ),
 S = diag( BETA(K+1),  ... , BETA(M) ),
 C**2 + S**2 = I.

 R = ( R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N) and R33 is stored
     (  0  R22 R23 )
 in B(M-K+1:L,N+M-K-L+1:N) on exit.

 The computation of the orthogonal transformation matrices U, V or Q
 is optional.  These matrices may either be formed explicitly, or they
 may be postmultiplied into input matrices U1, V1, or Q1.
Parameters

JOBU

          JOBU is CHARACTER*1
          = 'U':  U must contain an orthogonal matrix U1 on entry, and
                  the product U1*U is returned;
          = 'I':  U is initialized to the unit matrix, and the
                  orthogonal matrix U is returned;
          = 'N':  U is not computed.

JOBV

          JOBV is CHARACTER*1
          = 'V':  V must contain an orthogonal matrix V1 on entry, and
                  the product V1*V is returned;
          = 'I':  V is initialized to the unit matrix, and the
                  orthogonal matrix V is returned;
          = 'N':  V is not computed.

JOBQ

          JOBQ is CHARACTER*1
          = 'Q':  Q must contain an orthogonal matrix Q1 on entry, and
                  the product Q1*Q is returned;
          = 'I':  Q is initialized to the unit matrix, and the
                  orthogonal matrix Q is returned;
          = 'N':  Q is not computed.

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

P

          P is INTEGER
          The number of rows of the matrix B.  P >= 0.

N

          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.

K

          K is INTEGER

L

          L is INTEGER

          K and L specify the subblocks in the input matrices A and B:
          A23 = A(K+1:MIN(K+L,M),N-L+1:N) and B13 = B(1:L,N-L+1:N)
          of A and B, whose GSVD is going to be computed by DTGSJA.
          See Further Details.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A(N-K+1:N,1:MIN(K+L,M) ) contains the triangular
          matrix R or part of R.  See Purpose for details.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).

B

          B is DOUBLE PRECISION array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, if necessary, B(M-K+1:L,N+M-K-L+1:N) contains
          a part of R.  See Purpose for details.

LDB

          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).

TOLA

          TOLA is DOUBLE PRECISION

TOLB

          TOLB is DOUBLE PRECISION

          TOLA and TOLB are the convergence criteria for the Jacobi-
          Kogbetliantz iteration procedure. Generally, they are the
          same as used in the preprocessing step, say
              TOLA = max(M,N)*norm(A)*MAZHEPS,
              TOLB = max(P,N)*norm(B)*MAZHEPS.

ALPHA

          ALPHA is DOUBLE PRECISION array, dimension (N)

BETA

          BETA is DOUBLE PRECISION array, dimension (N)

          On exit, ALPHA and BETA contain the generalized singular
          value pairs of A and B;
            ALPHA(1:K) = 1,
            BETA(1:K)  = 0,
          and if M-K-L >= 0,
            ALPHA(K+1:K+L) = diag(C),
            BETA(K+1:K+L)  = diag(S),
          or if M-K-L < 0,
            ALPHA(K+1:M)= C, ALPHA(M+1:K+L)= 0
            BETA(K+1:M) = S, BETA(M+1:K+L) = 1.
          Furthermore, if K+L < N,
            ALPHA(K+L+1:N) = 0 and
            BETA(K+L+1:N)  = 0.

U

          U is DOUBLE PRECISION array, dimension (LDU,M)
          On entry, if JOBU = 'U', U must contain a matrix U1 (usually
          the orthogonal matrix returned by DGGSVP).
          On exit,
          if JOBU = 'I', U contains the orthogonal matrix U;
          if JOBU = 'U', U contains the product U1*U.
          If JOBU = 'N', U is not referenced.

LDU

          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.

V

          V is DOUBLE PRECISION array, dimension (LDV,P)
          On entry, if JOBV = 'V', V must contain a matrix V1 (usually
          the orthogonal matrix returned by DGGSVP).
          On exit,
          if JOBV = 'I', V contains the orthogonal matrix V;
          if JOBV = 'V', V contains the product V1*V.
          If JOBV = 'N', V is not referenced.

LDV

          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.

Q

          Q is DOUBLE PRECISION array, dimension (LDQ,N)
          On entry, if JOBQ = 'Q', Q must contain a matrix Q1 (usually
          the orthogonal matrix returned by DGGSVP).
          On exit,
          if JOBQ = 'I', Q contains the orthogonal matrix Q;
          if JOBQ = 'Q', Q contains the product Q1*Q.
          If JOBQ = 'N', Q is not referenced.

LDQ

          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.

WORK

          WORK is DOUBLE PRECISION array, dimension (2*N)

NCYCLE

          NCYCLE is INTEGER
          The number of cycles required for convergence.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          = 1:  the procedure does not converge after MAXIT cycles.
  Internal Parameters
  ===================

  MAXIT   INTEGER
          MAXIT specifies the total loops that the iterative procedure
          may take. If after MAXIT cycles, the routine fails to
          converge, we return INFO = 1..fi

 

Author
  Univ. of Tennessee 

Univ. of California Berkeley 

Univ. of Colorado Denver 

NAG Ltd.

Further Details:

  DTGSJA essentially uses a variant of Kogbetliantz algorithm to reduce
  min(L,M-K)-by-L triangular (or trapezoidal) matrix A23 and L-by-L
  matrix B13 to the form:

           U1**T *A13*Q1 = C1*R1; V1**T *B13*Q1 = S1*R1,

  where U1, V1 and Q1 are orthogonal matrix, and Z**T is the transpose
  of Z.  C1 and S1 are diagonal matrices satisfying

                C1**2 + S1**2 = I,

  and R1 is an L-by-L nonsingular upper triangular matrix.

Definition at line 375 of file dtgsja.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page dtgsja(3) is an alias of dtgsja.f(3).

Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK