dstt22.f - Man Page
TESTING/EIG/dstt22.f
Synopsis
Functions/Subroutines
subroutine dstt22 (n, m, kband, ad, ae, sd, se, u, ldu, work, ldwork, result)
DSTT22
Function/Subroutine Documentation
subroutine dstt22 (integer n, integer m, integer kband, double precision, dimension( * ) ad, double precision, dimension( * ) ae, double precision, dimension( * ) sd, double precision, dimension( * ) se, double precision, dimension( ldu, * ) u, integer ldu, double precision, dimension( ldwork, * ) work, integer ldwork, double precision, dimension( 2 ) result)
DSTT22
Purpose:
DSTT22 checks a set of M eigenvalues and eigenvectors, A U = U S where A is symmetric tridiagonal, the columns of U are orthogonal, and S is diagonal (if KBAND=0) or symmetric tridiagonal (if KBAND=1). Two tests are performed: RESULT(1) = | U' A U - S | / ( |A| m ulp ) RESULT(2) = | I - U'U | / ( m ulp )
- Parameters
N
N is INTEGER The size of the matrix. If it is zero, DSTT22 does nothing. It must be at least zero.
M
M is INTEGER The number of eigenpairs to check. If it is zero, DSTT22 does nothing. It must be at least zero.
KBAND
KBAND is INTEGER The bandwidth of the matrix S. It may only be zero or one. If zero, then S is diagonal, and SE is not referenced. If one, then S is symmetric tri-diagonal.
AD
AD is DOUBLE PRECISION array, dimension (N) The diagonal of the original (unfactored) matrix A. A is assumed to be symmetric tridiagonal.
AE
AE is DOUBLE PRECISION array, dimension (N) The off-diagonal of the original (unfactored) matrix A. A is assumed to be symmetric tridiagonal. AE(1) is ignored, AE(2) is the (1,2) and (2,1) element, etc.
SD
SD is DOUBLE PRECISION array, dimension (N) The diagonal of the (symmetric tri-) diagonal matrix S.
SE
SE is DOUBLE PRECISION array, dimension (N) The off-diagonal of the (symmetric tri-) diagonal matrix S. Not referenced if KBSND=0. If KBAND=1, then AE(1) is ignored, SE(2) is the (1,2) and (2,1) element, etc.
U
U is DOUBLE PRECISION array, dimension (LDU, N) The orthogonal matrix in the decomposition.
LDU
LDU is INTEGER The leading dimension of U. LDU must be at least N.
WORK
WORK is DOUBLE PRECISION array, dimension (LDWORK, M+1)
LDWORK
LDWORK is INTEGER The leading dimension of WORK. LDWORK must be at least max(1,M).
RESULT
RESULT is DOUBLE PRECISION array, dimension (2) The values computed by the two tests described above. The values are currently limited to 1/ulp, to avoid overflow.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 137 of file dstt22.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page dstt22(3) is an alias of dstt22.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK