dsptrd.f man page

dsptrd.f

Synopsis

Functions/Subroutines

subroutine dsptrd (UPLO, N, AP, D, E, TAU, INFO)
DSPTRD

Function/Subroutine Documentation

subroutine dsptrd (character UPLO, integer N, double precision, dimension( * ) AP, double precision, dimension( * ) D, double precision, dimension( * ) E, double precision, dimension( * ) TAU, integer INFO)

DSPTRD  

Purpose:

 DSPTRD reduces a real symmetric matrix A stored in packed form to
 symmetric tridiagonal form T by an orthogonal similarity
 transformation: Q**T * A * Q = T.
Parameters:

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

AP

          AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the symmetric matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
          On exit, if UPLO = 'U', the diagonal and first superdiagonal
          of A are overwritten by the corresponding elements of the
          tridiagonal matrix T, and the elements above the first
          superdiagonal, with the array TAU, represent the orthogonal
          matrix Q as a product of elementary reflectors; if UPLO
          = 'L', the diagonal and first subdiagonal of A are over-
          written by the corresponding elements of the tridiagonal
          matrix T, and the elements below the first subdiagonal, with
          the array TAU, represent the orthogonal matrix Q as a product
          of elementary reflectors. See Further Details.

D

          D is DOUBLE PRECISION array, dimension (N)
          The diagonal elements of the tridiagonal matrix T:
          D(i) = A(i,i).

E

          E is DOUBLE PRECISION array, dimension (N-1)
          The off-diagonal elements of the tridiagonal matrix T:
          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.

TAU

          TAU is DOUBLE PRECISION array, dimension (N-1)
          The scalar factors of the elementary reflectors (see Further
          Details).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Further Details:

  If UPLO = 'U', the matrix Q is represented as a product of elementary
  reflectors

     Q = H(n-1) . . . H(2) H(1).

  Each H(i) has the form

     H(i) = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in AP,
  overwriting A(1:i-1,i+1), and tau is stored in TAU(i).

  If UPLO = 'L', the matrix Q is represented as a product of elementary
  reflectors

     Q = H(1) H(2) . . . H(n-1).

  Each H(i) has the form

     H(i) = I - tau * v * v**T

  where tau is a real scalar, and v is a real vector with
  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in AP,
  overwriting A(i+2:n,i), and tau is stored in TAU(i).

Definition at line 152 of file dsptrd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page dsptrd(3) is an alias of dsptrd.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK