# dsbgvd.f man page

dsbgvd.f

## Synopsis

### Functions/Subroutines

subroutine **dsbgvd** (JOBZ, UPLO, **N**, KA, KB, AB, LDAB, BB, LDBB, W, Z, LDZ, WORK, LWORK, IWORK, LIWORK, INFO)**DSBGVD**

## Function/Subroutine Documentation

### subroutine dsbgvd (character JOBZ, character UPLO, integer N, integer KA, integer KB, double precision, dimension( ldab, * ) AB, integer LDAB, double precision, dimension( ldbb, * ) BB, integer LDBB, double precision, dimension( * ) W, double precision, dimension( ldz, * ) Z, integer LDZ, double precision, dimension( * ) WORK, integer LWORK, integer, dimension( * ) IWORK, integer LIWORK, integer INFO)

**DSBGVD**

**Purpose:**

DSBGVD computes all the eigenvalues, and optionally, the eigenvectors of a real generalized symmetric-definite banded eigenproblem, of the form A*x=(lambda)*B*x. Here A and B are assumed to be symmetric and banded, and B is also positive definite. If eigenvectors are desired, it uses a divide and conquer algorithm. The divide and conquer algorithm makes very mild assumptions about floating point arithmetic. It will work on machines with a guard digit in add/subtract, or on those binary machines without guard digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2. It could conceivably fail on hexadecimal or decimal machines without guard digits, but we know of none.

**Parameters:**-
*JOBZ*JOBZ is CHARACTER*1 = 'N': Compute eigenvalues only; = 'V': Compute eigenvalues and eigenvectors.

*UPLO*UPLO is CHARACTER*1 = 'U': Upper triangles of A and B are stored; = 'L': Lower triangles of A and B are stored.

*N*N is INTEGER The order of the matrices A and B. N >= 0.

*KA*KA is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KA >= 0.

*KB*KB is INTEGER The number of superdiagonals of the matrix B if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KB >= 0.

*AB*AB is DOUBLE PRECISION array, dimension (LDAB, N) On entry, the upper or lower triangle of the symmetric band matrix A, stored in the first ka+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(ka+1+i-j,j) = A(i,j) for max(1,j-ka)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+ka). On exit, the contents of AB are destroyed.

*LDAB*LDAB is INTEGER The leading dimension of the array AB. LDAB >= KA+1.

*BB*BB is DOUBLE PRECISION array, dimension (LDBB, N) On entry, the upper or lower triangle of the symmetric band matrix B, stored in the first kb+1 rows of the array. The j-th column of B is stored in the j-th column of the array BB as follows: if UPLO = 'U', BB(ka+1+i-j,j) = B(i,j) for max(1,j-kb)<=i<=j; if UPLO = 'L', BB(1+i-j,j) = B(i,j) for j<=i<=min(n,j+kb). On exit, the factor S from the split Cholesky factorization B = S**T*S, as returned by DPBSTF.

*LDBB*LDBB is INTEGER The leading dimension of the array BB. LDBB >= KB+1.

*W*W is DOUBLE PRECISION array, dimension (N) If INFO = 0, the eigenvalues in ascending order.

*Z*Z is DOUBLE PRECISION array, dimension (LDZ, N) If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of eigenvectors, with the i-th column of Z holding the eigenvector associated with W(i). The eigenvectors are normalized so Z**T*B*Z = I. If JOBZ = 'N', then Z is not referenced.

*LDZ*LDZ is INTEGER The leading dimension of the array Z. LDZ >= 1, and if JOBZ = 'V', LDZ >= max(1,N).

*WORK*WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*LWORK*LWORK is INTEGER The dimension of the array WORK. If N <= 1, LWORK >= 1. If JOBZ = 'N' and N > 1, LWORK >= 2*N. If JOBZ = 'V' and N > 1, LWORK >= 1 + 5*N + 2*N**2. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA.

*IWORK*IWORK is INTEGER array, dimension (MAX(1,LIWORK)) On exit, if LIWORK > 0, IWORK(1) returns the optimal LIWORK.

*LIWORK*LIWORK is INTEGER The dimension of the array IWORK. If JOBZ = 'N' or N <= 1, LIWORK >= 1. If JOBZ = 'V' and N > 1, LIWORK >= 3 + 5*N. If LIWORK = -1, then a workspace query is assumed; the routine only calculates the optimal sizes of the WORK and IWORK arrays, returns these values as the first entries of the WORK and IWORK arrays, and no error message related to LWORK or LIWORK is issued by XERBLA.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is: <= N: the algorithm failed to converge: i off-diagonal elements of an intermediate tridiagonal form did not converge to zero; > N: if INFO = N + i, for 1 <= i <= N, then DPBSTF returned INFO = i: B is not positive definite. The factorization of B could not be completed and no eigenvalues or eigenvectors were computed.

**Author:**-
Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**June 2016

**Contributors:**Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA

Definition at line 229 of file dsbgvd.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page dsbgvd(3) is an alias of dsbgvd.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK