dpotrf2.f - Man Page

SRC/dpotrf2.f

Synopsis

Functions/Subroutines

recursive subroutine dpotrf2 (uplo, n, a, lda, info)
DPOTRF2

Function/Subroutine Documentation

recursive subroutine dpotrf2 (character uplo, integer n, double precision, dimension( lda, * ) a, integer lda, integer info)

DPOTRF2

Purpose:

 DPOTRF2 computes the Cholesky factorization of a real symmetric
 positive definite matrix A using the recursive algorithm.

 The factorization has the form
    A = U**T * U,  if UPLO = 'U', or
    A = L  * L**T,  if UPLO = 'L',
 where U is an upper triangular matrix and L is lower triangular.

 This is the recursive version of the algorithm. It divides
 the matrix into four submatrices:

        [  A11 | A12  ]  where A11 is n1 by n1 and A22 is n2 by n2
    A = [ -----|----- ]  with n1 = n/2
        [  A21 | A22  ]       n2 = n-n1

 The subroutine calls itself to factor A11. Update and scale A21
 or A12, update A22 then calls itself to factor A22.
Parameters

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.

          On exit, if INFO = 0, the factor U or L from the Cholesky
          factorization A = U**T*U or A = L*L**T.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading principal minor of order i
                is not positive, and the factorization could not be
                completed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 105 of file dpotrf2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page dpotrf2(3) is an alias of dpotrf2.f(3).

Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK