dposv.f - Man Page

SRC/dposv.f

Synopsis

Functions/Subroutines

subroutine dposv (uplo, n, nrhs, a, lda, b, ldb, info)
DPOSV computes the solution to system of linear equations A * X = B for PO matrices

Function/Subroutine Documentation

subroutine dposv (character uplo, integer n, integer nrhs, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( ldb, * ) b, integer ldb, integer info)

DPOSV computes the solution to system of linear equations A * X = B for PO matrices  

Purpose:

 DPOSV computes the solution to a real system of linear equations
    A * X = B,
 where A is an N-by-N symmetric positive definite matrix and X and B
 are N-by-NRHS matrices.

 The Cholesky decomposition is used to factor A as
    A = U**T* U,  if UPLO = 'U', or
    A = L * L**T,  if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower triangular
 matrix.  The factored form of A is then used to solve the system of
 equations A * X = B.
Parameters

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

A

          A is DOUBLE PRECISION array, dimension (LDA,N)
          On entry, the symmetric matrix A.  If UPLO = 'U', the leading
          N-by-N upper triangular part of A contains the upper
          triangular part of the matrix A, and the strictly lower
          triangular part of A is not referenced.  If UPLO = 'L', the
          leading N-by-N lower triangular part of A contains the lower
          triangular part of the matrix A, and the strictly upper
          triangular part of A is not referenced.

          On exit, if INFO = 0, the factor U or L from the Cholesky
          factorization A = U**T*U or A = L*L**T.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

B

          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading principal minor of order i
                of A is not positive, so the factorization could not
                be completed, and the solution has not been computed.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 129 of file dposv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page dposv(3) is an alias of dposv.f(3).

Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK