# dporfs.f man page

dporfs.f —

## Synopsis

### Functions/Subroutines

subroutinedporfs(UPLO, N, NRHS, A, LDA, AF, LDAF, B, LDB, X, LDX, FERR, BERR, WORK, IWORK, INFO)DPORFS

## Function/Subroutine Documentation

### subroutine dporfs (characterUPLO, integerN, integerNRHS, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( ldaf, * )AF, integerLDAF, double precision, dimension( ldb, * )B, integerLDB, double precision, dimension( ldx, * )X, integerLDX, double precision, dimension( * )FERR, double precision, dimension( * )BERR, double precision, dimension( * )WORK, integer, dimension( * )IWORK, integerINFO)

**DPORFS**

**Purpose:**

```
DPORFS improves the computed solution to a system of linear
equations when the coefficient matrix is symmetric positive definite,
and provides error bounds and backward error estimates for the
solution.
```

**Parameters:**

*UPLO*

```
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
```

*N*

```
N is INTEGER
The order of the matrix A. N >= 0.
```

*NRHS*

```
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
```

*A*

```
A is DOUBLE PRECISION array, dimension (LDA,N)
The symmetric matrix A. If UPLO = 'U', the leading N-by-N
upper triangular part of A contains the upper triangular part
of the matrix A, and the strictly lower triangular part of A
is not referenced. If UPLO = 'L', the leading N-by-N lower
triangular part of A contains the lower triangular part of
the matrix A, and the strictly upper triangular part of A is
not referenced.
```

*LDA*

```
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,N).
```

*AF*

```
AF is DOUBLE PRECISION array, dimension (LDAF,N)
The triangular factor U or L from the Cholesky factorization
A = U**T*U or A = L*L**T, as computed by DPOTRF.
```

*LDAF*

```
LDAF is INTEGER
The leading dimension of the array AF. LDAF >= max(1,N).
```

*B*

```
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
The right hand side matrix B.
```

*LDB*

```
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
```

*X*

```
X is DOUBLE PRECISION array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by DPOTRS.
On exit, the improved solution matrix X.
```

*LDX*

```
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
```

*FERR*

```
FERR is DOUBLE PRECISION array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
```

*BERR*

```
BERR is DOUBLE PRECISION array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
```

*WORK*

`WORK is DOUBLE PRECISION array, dimension (3*N)`

*IWORK*

`IWORK is INTEGER array, dimension (N)`

*INFO*

```
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
```

**Internal Parameters:**

`ITMAX is the maximum number of steps of iterative refinement.`

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

November 2011

Definition at line 183 of file dporfs.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

dporfs(3) is an alias of dporfs.f(3).