# dpftrs.f man page

dpftrs.f —

## Synopsis

### Functions/Subroutines

subroutinedpftrs(TRANSR, UPLO, N, NRHS, A, B, LDB, INFO)DPFTRS

## Function/Subroutine Documentation

### subroutine dpftrs (characterTRANSR, characterUPLO, integerN, integerNRHS, double precision, dimension( 0: * )A, double precision, dimension( ldb, * )B, integerLDB, integerINFO)

**DPFTRS**

**Purpose:**

```
DPFTRS solves a system of linear equations A*X = B with a symmetric
positive definite matrix A using the Cholesky factorization
A = U**T*U or A = L*L**T computed by DPFTRF.
```

**Parameters:**

*TRANSR*

```
TRANSR is CHARACTER*1
= 'N': The Normal TRANSR of RFP A is stored;
= 'T': The Transpose TRANSR of RFP A is stored.
```

*UPLO*

```
UPLO is CHARACTER*1
= 'U': Upper triangle of RFP A is stored;
= 'L': Lower triangle of RFP A is stored.
```

*N*

```
N is INTEGER
The order of the matrix A. N >= 0.
```

*NRHS*

```
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrix B. NRHS >= 0.
```

*A*

```
A is DOUBLE PRECISION array, dimension ( N*(N+1)/2 ).
The triangular factor U or L from the Cholesky factorization
of RFP A = U**T*U or RFP A = L*L**T, as computed by DPFTRF.
See note below for more details about RFP A.
```

*B*

```
B is DOUBLE PRECISION array, dimension (LDB,NRHS)
On entry, the right hand side matrix B.
On exit, the solution matrix X.
```

*LDB*

```
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
```

*INFO*

```
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
```

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

November 2011

**Further Details:**

```
We first consider Rectangular Full Packed (RFP) Format when N is
even. We give an example where N = 6.
AP is Upper AP is Lower
00 01 02 03 04 05 00
11 12 13 14 15 10 11
22 23 24 25 20 21 22
33 34 35 30 31 32 33
44 45 40 41 42 43 44
55 50 51 52 53 54 55
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last
three columns of AP upper. The lower triangle A(4:6,0:2) consists of
the transpose of the first three columns of AP upper.
For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first
three columns of AP lower. The upper triangle A(0:2,0:2) consists of
the transpose of the last three columns of AP lower.
This covers the case N even and TRANSR = 'N'.
RFP A RFP A
03 04 05 33 43 53
13 14 15 00 44 54
23 24 25 10 11 55
33 34 35 20 21 22
00 44 45 30 31 32
01 11 55 40 41 42
02 12 22 50 51 52
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
transpose of RFP A above. One therefore gets:
RFP A RFP A
03 13 23 33 00 01 02 33 00 10 20 30 40 50
04 14 24 34 44 11 12 43 44 11 21 31 41 51
05 15 25 35 45 55 22 53 54 55 22 32 42 52
We then consider Rectangular Full Packed (RFP) Format when N is
odd. We give an example where N = 5.
AP is Upper AP is Lower
00 01 02 03 04 00
11 12 13 14 10 11
22 23 24 20 21 22
33 34 30 31 32 33
44 40 41 42 43 44
Let TRANSR = 'N'. RFP holds AP as follows:
For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last
three columns of AP upper. The lower triangle A(3:4,0:1) consists of
the transpose of the first two columns of AP upper.
For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first
three columns of AP lower. The upper triangle A(0:1,1:2) consists of
the transpose of the last two columns of AP lower.
This covers the case N odd and TRANSR = 'N'.
RFP A RFP A
02 03 04 00 33 43
12 13 14 10 11 44
22 23 24 20 21 22
00 33 34 30 31 32
01 11 44 40 41 42
Now let TRANSR = 'T'. RFP A in both UPLO cases is just the
transpose of RFP A above. One therefore gets:
RFP A RFP A
02 12 22 00 01 00 10 20 30 40 50
03 13 23 33 11 33 11 21 31 41 51
04 14 24 34 44 43 44 22 32 42 52
```

Definition at line 200 of file dpftrs.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

dpftrs(3) is an alias of dpftrs.f(3).