# dpbequ.f man page

dpbequ.f

## Synopsis

### Functions/Subroutines

subroutine **dpbequ** (UPLO, **N**, KD, AB, LDAB, S, SCOND, AMAX, INFO)**DPBEQU**

## Function/Subroutine Documentation

### subroutine dpbequ (character UPLO, integer N, integer KD, double precision, dimension( ldab, * ) AB, integer LDAB, double precision, dimension( * ) S, double precision SCOND, double precision AMAX, integer INFO)

**DPBEQU**

**Purpose:**

DPBEQU computes row and column scalings intended to equilibrate a symmetric positive definite band matrix A and reduce its condition number (with respect to the two-norm). S contains the scale factors, S(i) = 1/sqrt(A(i,i)), chosen so that the scaled matrix B with elements B(i,j) = S(i)*A(i,j)*S(j) has ones on the diagonal. This choice of S puts the condition number of B within a factor N of the smallest possible condition number over all possible diagonal scalings.

**Parameters:**-
*UPLO*UPLO is CHARACTER*1 = 'U': Upper triangular of A is stored; = 'L': Lower triangular of A is stored.

*N*N is INTEGER The order of the matrix A. N >= 0.

*KD*KD is INTEGER The number of superdiagonals of the matrix A if UPLO = 'U', or the number of subdiagonals if UPLO = 'L'. KD >= 0.

*AB*AB is DOUBLE PRECISION array, dimension (LDAB,N) The upper or lower triangle of the symmetric band matrix A, stored in the first KD+1 rows of the array. The j-th column of A is stored in the j-th column of the array AB as follows: if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j; if UPLO = 'L', AB(1+i-j,j) = A(i,j) for j<=i<=min(n,j+kd).

*LDAB*LDAB is INTEGER The leading dimension of the array A. LDAB >= KD+1.

*S*S is DOUBLE PRECISION array, dimension (N) If INFO = 0, S contains the scale factors for A.

*SCOND*SCOND is DOUBLE PRECISION If INFO = 0, S contains the ratio of the smallest S(i) to the largest S(i). If SCOND >= 0.1 and AMAX is neither too large nor too small, it is not worth scaling by S.

*AMAX*AMAX is DOUBLE PRECISION Absolute value of largest matrix element. If AMAX is very close to overflow or very close to underflow, the matrix should be scaled.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value. > 0: if INFO = i, the i-th diagonal element is nonpositive.

**Author:**-
Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**December 2016

Definition at line 131 of file dpbequ.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page dpbequ(3) is an alias of dpbequ.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK