doublePTcomputational - Man Page

double

Synopsis

Functions

subroutine dptcon (N, D, E, ANORM, RCOND, WORK, INFO)
DPTCON
subroutine dpteqr (COMPZ, N, D, E, Z, LDZ, WORK, INFO)
DPTEQR
subroutine dptrfs (N, NRHS, D, E, DF, EF, B, LDB, X, LDX, FERR, BERR, WORK, INFO)
DPTRFS
subroutine dpttrf (N, D, E, INFO)
DPTTRF
subroutine dpttrs (N, NRHS, D, E, B, LDB, INFO)
DPTTRS
subroutine dptts2 (N, NRHS, D, E, B, LDB)
DPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.

Detailed Description

This is the group of double computational functions for PT matrices

Function Documentation

subroutine dptcon (integer N, double precision, dimension( * ) D, double precision, dimension( * ) E, double precision ANORM, double precision RCOND, double precision, dimension( * ) WORK, integer INFO)

DPTCON  

Purpose:

 DPTCON computes the reciprocal of the condition number (in the
 1-norm) of a real symmetric positive definite tridiagonal matrix
 using the factorization A = L*D*L**T or A = U**T*D*U computed by
 DPTTRF.

 Norm(inv(A)) is computed by a direct method, and the reciprocal of
 the condition number is computed as
              RCOND = 1 / (ANORM * norm(inv(A))).
Parameters

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

D

          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the diagonal matrix D from the
          factorization of A, as computed by DPTTRF.

E

          E is DOUBLE PRECISION array, dimension (N-1)
          The (n-1) off-diagonal elements of the unit bidiagonal factor
          U or L from the factorization of A,  as computed by DPTTRF.

ANORM

          ANORM is DOUBLE PRECISION
          The 1-norm of the original matrix A.

RCOND

          RCOND is DOUBLE PRECISION
          The reciprocal of the condition number of the matrix A,
          computed as RCOND = 1/(ANORM * AINVNM), where AINVNM is the
          1-norm of inv(A) computed in this routine.

WORK

          WORK is DOUBLE PRECISION array, dimension (N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The method used is described in Nicholas J. Higham, "Efficient
  Algorithms for Computing the Condition Number of a Tridiagonal
  Matrix", SIAM J. Sci. Stat. Comput., Vol. 7, No. 1, January 1986.

Definition at line 117 of file dptcon.f.

subroutine dpteqr (character COMPZ, integer N, double precision, dimension( * ) D, double precision, dimension( * ) E, double precision, dimension( ldz, * ) Z, integer LDZ, double precision, dimension( * ) WORK, integer INFO)

DPTEQR  

Purpose:

 DPTEQR computes all eigenvalues and, optionally, eigenvectors of a
 symmetric positive definite tridiagonal matrix by first factoring the
 matrix using DPTTRF, and then calling DBDSQR to compute the singular
 values of the bidiagonal factor.

 This routine computes the eigenvalues of the positive definite
 tridiagonal matrix to high relative accuracy.  This means that if the
 eigenvalues range over many orders of magnitude in size, then the
 small eigenvalues and corresponding eigenvectors will be computed
 more accurately than, for example, with the standard QR method.

 The eigenvectors of a full or band symmetric positive definite matrix
 can also be found if DSYTRD, DSPTRD, or DSBTRD has been used to
 reduce this matrix to tridiagonal form. (The reduction to tridiagonal
 form, however, may preclude the possibility of obtaining high
 relative accuracy in the small eigenvalues of the original matrix, if
 these eigenvalues range over many orders of magnitude.)
Parameters

COMPZ

          COMPZ is CHARACTER*1
          = 'N':  Compute eigenvalues only.
          = 'V':  Compute eigenvectors of original symmetric
                  matrix also.  Array Z contains the orthogonal
                  matrix used to reduce the original matrix to
                  tridiagonal form.
          = 'I':  Compute eigenvectors of tridiagonal matrix also.

N

          N is INTEGER
          The order of the matrix.  N >= 0.

D

          D is DOUBLE PRECISION array, dimension (N)
          On entry, the n diagonal elements of the tridiagonal
          matrix.
          On normal exit, D contains the eigenvalues, in descending
          order.

E

          E is DOUBLE PRECISION array, dimension (N-1)
          On entry, the (n-1) subdiagonal elements of the tridiagonal
          matrix.
          On exit, E has been destroyed.

Z

          Z is DOUBLE PRECISION array, dimension (LDZ, N)
          On entry, if COMPZ = 'V', the orthogonal matrix used in the
          reduction to tridiagonal form.
          On exit, if COMPZ = 'V', the orthonormal eigenvectors of the
          original symmetric matrix;
          if COMPZ = 'I', the orthonormal eigenvectors of the
          tridiagonal matrix.
          If INFO > 0 on exit, Z contains the eigenvectors associated
          with only the stored eigenvalues.
          If  COMPZ = 'N', then Z is not referenced.

LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.  LDZ >= 1, and if
          COMPZ = 'V' or 'I', LDZ >= max(1,N).

WORK

          WORK is DOUBLE PRECISION array, dimension (4*N)

INFO

          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  if INFO = i, and i is:
                <= N  the Cholesky factorization of the matrix could
                      not be performed because the i-th principal minor
                      was not positive definite.
                > N   the SVD algorithm failed to converge;
                      if INFO = N+i, i off-diagonal elements of the
                      bidiagonal factor did not converge to zero.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 144 of file dpteqr.f.

subroutine dptrfs (integer N, integer NRHS, double precision, dimension( * ) D, double precision, dimension( * ) E, double precision, dimension( * ) DF, double precision, dimension( * ) EF, double precision, dimension( ldb, * ) B, integer LDB, double precision, dimension( ldx, * ) X, integer LDX, double precision, dimension( * ) FERR, double precision, dimension( * ) BERR, double precision, dimension( * ) WORK, integer INFO)

DPTRFS  

Purpose:

 DPTRFS improves the computed solution to a system of linear
 equations when the coefficient matrix is symmetric positive definite
 and tridiagonal, and provides error bounds and backward error
 estimates for the solution.
Parameters

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

D

          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the tridiagonal matrix A.

E

          E is DOUBLE PRECISION array, dimension (N-1)
          The (n-1) subdiagonal elements of the tridiagonal matrix A.

DF

          DF is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the diagonal matrix D from the
          factorization computed by DPTTRF.

EF

          EF is DOUBLE PRECISION array, dimension (N-1)
          The (n-1) subdiagonal elements of the unit bidiagonal factor
          L from the factorization computed by DPTTRF.

B

          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          The right hand side matrix B.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

X

          X is DOUBLE PRECISION array, dimension (LDX,NRHS)
          On entry, the solution matrix X, as computed by DPTTRS.
          On exit, the improved solution matrix X.

LDX

          LDX is INTEGER
          The leading dimension of the array X.  LDX >= max(1,N).

FERR

          FERR is DOUBLE PRECISION array, dimension (NRHS)
          The forward error bound for each solution vector
          X(j) (the j-th column of the solution matrix X).
          If XTRUE is the true solution corresponding to X(j), FERR(j)
          is an estimated upper bound for the magnitude of the largest
          element in (X(j) - XTRUE) divided by the magnitude of the
          largest element in X(j).

BERR

          BERR is DOUBLE PRECISION array, dimension (NRHS)
          The componentwise relative backward error of each solution
          vector X(j) (i.e., the smallest relative change in
          any element of A or B that makes X(j) an exact solution).

WORK

          WORK is DOUBLE PRECISION array, dimension (2*N)

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value

Internal Parameters:

  ITMAX is the maximum number of steps of iterative refinement.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 161 of file dptrfs.f.

subroutine dpttrf (integer N, double precision, dimension( * ) D, double precision, dimension( * ) E, integer INFO)

DPTTRF  

Purpose:

 DPTTRF computes the L*D*L**T factorization of a real symmetric
 positive definite tridiagonal matrix A.  The factorization may also
 be regarded as having the form A = U**T*D*U.
Parameters

N

          N is INTEGER
          The order of the matrix A.  N >= 0.

D

          D is DOUBLE PRECISION array, dimension (N)
          On entry, the n diagonal elements of the tridiagonal matrix
          A.  On exit, the n diagonal elements of the diagonal matrix
          D from the L*D*L**T factorization of A.

E

          E is DOUBLE PRECISION array, dimension (N-1)
          On entry, the (n-1) subdiagonal elements of the tridiagonal
          matrix A.  On exit, the (n-1) subdiagonal elements of the
          unit bidiagonal factor L from the L*D*L**T factorization of A.
          E can also be regarded as the superdiagonal of the unit
          bidiagonal factor U from the U**T*D*U factorization of A.

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
          > 0: if INFO = k, the leading minor of order k is not
               positive definite; if k < N, the factorization could not
               be completed, while if k = N, the factorization was
               completed, but D(N) <= 0.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 90 of file dpttrf.f.

subroutine dpttrs (integer N, integer NRHS, double precision, dimension( * ) D, double precision, dimension( * ) E, double precision, dimension( ldb, * ) B, integer LDB, integer INFO)

DPTTRS  

Purpose:

 DPTTRS solves a tridiagonal system of the form
    A * X = B
 using the L*D*L**T factorization of A computed by DPTTRF.  D is a
 diagonal matrix specified in the vector D, L is a unit bidiagonal
 matrix whose subdiagonal is specified in the vector E, and X and B
 are N by NRHS matrices.
Parameters

N

          N is INTEGER
          The order of the tridiagonal matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

D

          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the diagonal matrix D from the
          L*D*L**T factorization of A.

E

          E is DOUBLE PRECISION array, dimension (N-1)
          The (n-1) subdiagonal elements of the unit bidiagonal factor
          L from the L*D*L**T factorization of A.  E can also be regarded
          as the superdiagonal of the unit bidiagonal factor U from the
          factorization A = U**T*D*U.

B

          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the right hand side vectors B for the system of
          linear equations.
          On exit, the solution vectors, X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

INFO

          INFO is INTEGER
          = 0: successful exit
          < 0: if INFO = -k, the k-th argument had an illegal value
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 108 of file dpttrs.f.

subroutine dptts2 (integer N, integer NRHS, double precision, dimension( * ) D, double precision, dimension( * ) E, double precision, dimension( ldb, * ) B, integer LDB)

DPTTS2 solves a tridiagonal system of the form AX=B using the L D LH factorization computed by spttrf.  

Purpose:

 DPTTS2 solves a tridiagonal system of the form
    A * X = B
 using the L*D*L**T factorization of A computed by DPTTRF.  D is a
 diagonal matrix specified in the vector D, L is a unit bidiagonal
 matrix whose subdiagonal is specified in the vector E, and X and B
 are N by NRHS matrices.
Parameters

N

          N is INTEGER
          The order of the tridiagonal matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

D

          D is DOUBLE PRECISION array, dimension (N)
          The n diagonal elements of the diagonal matrix D from the
          L*D*L**T factorization of A.

E

          E is DOUBLE PRECISION array, dimension (N-1)
          The (n-1) subdiagonal elements of the unit bidiagonal factor
          L from the L*D*L**T factorization of A.  E can also be regarded
          as the superdiagonal of the unit bidiagonal factor U from the
          factorization A = U**T*D*U.

B

          B is DOUBLE PRECISION array, dimension (LDB,NRHS)
          On entry, the right hand side vectors B for the system of
          linear equations.
          On exit, the solution vectors, X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 101 of file dptts2.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man pages dptcon(3), dpteqr(3), dptrfs(3), dpttrf(3), dpttrs(3) and dptts2(3) are aliases of doublePTcomputational(3).

Mon Jun 28 2021 Version 3.10.0 LAPACK