dormbr.f - Man Page
SRC/dormbr.f
Synopsis
Functions/Subroutines
subroutine dormbr (vect, side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork, info)
DORMBR
Function/Subroutine Documentation
subroutine dormbr (character vect, character side, character trans, integer m, integer n, integer k, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) tau, double precision, dimension( ldc, * ) c, integer ldc, double precision, dimension( * ) work, integer lwork, integer info)
DORMBR
Purpose:
If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'T': Q**T * C C * Q**T If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': P * C C * P TRANS = 'T': P**T * C C * P**T Here Q and P**T are the orthogonal matrices determined by DGEBRD when reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and P**T are defined as products of elementary reflectors H(i) and G(i) respectively. Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the order of the orthogonal matrix Q or P**T that is applied. If VECT = 'Q', A is assumed to have been an NQ-by-K matrix: if nq >= k, Q = H(1) H(2) . . . H(k); if nq < k, Q = H(1) H(2) . . . H(nq-1). If VECT = 'P', A is assumed to have been a K-by-NQ matrix: if k < nq, P = G(1) G(2) . . . G(k); if k >= nq, P = G(1) G(2) . . . G(nq-1).
- Parameters
VECT
VECT is CHARACTER*1 = 'Q': apply Q or Q**T; = 'P': apply P or P**T.
SIDE
SIDE is CHARACTER*1 = 'L': apply Q, Q**T, P or P**T from the Left; = 'R': apply Q, Q**T, P or P**T from the Right.
TRANS
TRANS is CHARACTER*1 = 'N': No transpose, apply Q or P; = 'T': Transpose, apply Q**T or P**T.
M
M is INTEGER The number of rows of the matrix C. M >= 0.
N
N is INTEGER The number of columns of the matrix C. N >= 0.
K
K is INTEGER If VECT = 'Q', the number of columns in the original matrix reduced by DGEBRD. If VECT = 'P', the number of rows in the original matrix reduced by DGEBRD. K >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,min(nq,K)) if VECT = 'Q' (LDA,nq) if VECT = 'P' The vectors which define the elementary reflectors H(i) and G(i), whose products determine the matrices Q and P, as returned by DGEBRD.
LDA
LDA is INTEGER The leading dimension of the array A. If VECT = 'Q', LDA >= max(1,nq); if VECT = 'P', LDA >= max(1,min(nq,K)).
TAU
TAU is DOUBLE PRECISION array, dimension (min(nq,K)) TAU(i) must contain the scalar factor of the elementary reflector H(i) or G(i) which determines Q or P, as returned by DGEBRD in the array argument TAUQ or TAUP.
C
C is DOUBLE PRECISION array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q or P*C or P**T*C or C*P or C*P**T.
LDC
LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).
WORK
WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
LWORK
LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For optimum performance LWORK >= N*NB if SIDE = 'L', and LWORK >= M*NB if SIDE = 'R', where NB is the optimal blocksize. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.
INFO
INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 193 of file dormbr.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page dormbr(3) is an alias of dormbr.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK