dormbr.f man page

dormbr.f —

Synopsis

Functions/Subroutines

subroutine dormbr (VECT, SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)
DORMBR

Function/Subroutine Documentation

subroutine dormbr (characterVECT, characterSIDE, characterTRANS, integerM, integerN, integerK, double precision, dimension( lda, * )A, integerLDA, double precision, dimension( * )TAU, double precision, dimension( ldc, * )C, integerLDC, double precision, dimension( * )WORK, integerLWORK, integerINFO)

DORMBR  

Purpose:

 If VECT = 'Q', DORMBR overwrites the general real M-by-N matrix C
 with
                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      Q * C          C * Q
 TRANS = 'T':      Q**T * C       C * Q**T

 If VECT = 'P', DORMBR overwrites the general real M-by-N matrix C
 with
                 SIDE = 'L'     SIDE = 'R'
 TRANS = 'N':      P * C          C * P
 TRANS = 'T':      P**T * C       C * P**T

 Here Q and P**T are the orthogonal matrices determined by DGEBRD when
 reducing a real matrix A to bidiagonal form: A = Q * B * P**T. Q and
 P**T are defined as products of elementary reflectors H(i) and G(i)
 respectively.

 Let nq = m if SIDE = 'L' and nq = n if SIDE = 'R'. Thus nq is the
 order of the orthogonal matrix Q or P**T that is applied.

 If VECT = 'Q', A is assumed to have been an NQ-by-K matrix:
 if nq >= k, Q = H(1) H(2) . . . H(k);
 if nq < k, Q = H(1) H(2) . . . H(nq-1).

 If VECT = 'P', A is assumed to have been a K-by-NQ matrix:
 if k < nq, P = G(1) G(2) . . . G(k);
 if k >= nq, P = G(1) G(2) . . . G(nq-1).
Parameters:

VECT

          VECT is CHARACTER*1
          = 'Q': apply Q or Q**T;
          = 'P': apply P or P**T.

SIDE

          SIDE is CHARACTER*1
          = 'L': apply Q, Q**T, P or P**T from the Left;
          = 'R': apply Q, Q**T, P or P**T from the Right.

TRANS

          TRANS is CHARACTER*1
          = 'N':  No transpose, apply Q  or P;
          = 'T':  Transpose, apply Q**T or P**T.

M

          M is INTEGER
          The number of rows of the matrix C. M >= 0.

N

          N is INTEGER
          The number of columns of the matrix C. N >= 0.

K

          K is INTEGER
          If VECT = 'Q', the number of columns in the original
          matrix reduced by DGEBRD.
          If VECT = 'P', the number of rows in the original
          matrix reduced by DGEBRD.
          K >= 0.

A

          A is DOUBLE PRECISION array, dimension
                                (LDA,min(nq,K)) if VECT = 'Q'
                                (LDA,nq)        if VECT = 'P'
          The vectors which define the elementary reflectors H(i) and
          G(i), whose products determine the matrices Q and P, as
          returned by DGEBRD.

LDA

          LDA is INTEGER
          The leading dimension of the array A.
          If VECT = 'Q', LDA >= max(1,nq);
          if VECT = 'P', LDA >= max(1,min(nq,K)).

TAU

          TAU is DOUBLE PRECISION array, dimension (min(nq,K))
          TAU(i) must contain the scalar factor of the elementary
          reflector H(i) or G(i) which determines Q or P, as returned
          by DGEBRD in the array argument TAUQ or TAUP.

C

          C is DOUBLE PRECISION array, dimension (LDC,N)
          On entry, the M-by-N matrix C.
          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q
          or P*C or P**T*C or C*P or C*P**T.

LDC

          LDC is INTEGER
          The leading dimension of the array C. LDC >= max(1,M).

WORK

          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

LWORK

          LWORK is INTEGER
          The dimension of the array WORK.
          If SIDE = 'L', LWORK >= max(1,N);
          if SIDE = 'R', LWORK >= max(1,M).
          For optimum performance LWORK >= N*NB if SIDE = 'L', and
          LWORK >= M*NB if SIDE = 'R', where NB is the optimal
          blocksize.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Definition at line 195 of file dormbr.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

dormbr(3) is an alias of dormbr.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK