dorbdb1.f - Man Page

SRC/dorbdb1.f

Synopsis

Functions/Subroutines

subroutine dorbdb1 (m, p, q, x11, ldx11, x21, ldx21, theta, phi, taup1, taup2, tauq1, work, lwork, info)
DORBDB1

Function/Subroutine Documentation

subroutine dorbdb1 (integer m, integer p, integer q, double precision, dimension(ldx11,*) x11, integer ldx11, double precision, dimension(ldx21,*) x21, integer ldx21, double precision, dimension(*) theta, double precision, dimension(*) phi, double precision, dimension(*) taup1, double precision, dimension(*) taup2, double precision, dimension(*) tauq1, double precision, dimension(*) work, integer lwork, integer info)

DORBDB1  

Purpose:

 DORBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny
 matrix X with orthonormal columns:

                            [ B11 ]
      [ X11 ]   [ P1 |    ] [  0  ]
      [-----] = [---------] [-----] Q1**T .
      [ X21 ]   [    | P2 ] [ B21 ]
                            [  0  ]

 X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P,
 M-P, or M-Q. Routines DORBDB2, DORBDB3, and DORBDB4 handle cases in
 which Q is not the minimum dimension.

 The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
 and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
 Householder vectors.

 B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by
 angles THETA, PHI.
Parameters

M

          M is INTEGER
           The number of rows X11 plus the number of rows in X21.

P

          P is INTEGER
           The number of rows in X11. 0 <= P <= M.

Q

          Q is INTEGER
           The number of columns in X11 and X21. 0 <= Q <=
           MIN(P,M-P,M-Q).

X11

          X11 is DOUBLE PRECISION array, dimension (LDX11,Q)
           On entry, the top block of the matrix X to be reduced. On
           exit, the columns of tril(X11) specify reflectors for P1 and
           the rows of triu(X11,1) specify reflectors for Q1.

LDX11

          LDX11 is INTEGER
           The leading dimension of X11. LDX11 >= P.

X21

          X21 is DOUBLE PRECISION array, dimension (LDX21,Q)
           On entry, the bottom block of the matrix X to be reduced. On
           exit, the columns of tril(X21) specify reflectors for P2.

LDX21

          LDX21 is INTEGER
           The leading dimension of X21. LDX21 >= M-P.

THETA

          THETA is DOUBLE PRECISION array, dimension (Q)
           The entries of the bidiagonal blocks B11, B21 are defined by
           THETA and PHI. See Further Details.

PHI

          PHI is DOUBLE PRECISION array, dimension (Q-1)
           The entries of the bidiagonal blocks B11, B21 are defined by
           THETA and PHI. See Further Details.

TAUP1

          TAUP1 is DOUBLE PRECISION array, dimension (P)
           The scalar factors of the elementary reflectors that define
           P1.

TAUP2

          TAUP2 is DOUBLE PRECISION array, dimension (M-P)
           The scalar factors of the elementary reflectors that define
           P2.

TAUQ1

          TAUQ1 is DOUBLE PRECISION array, dimension (Q)
           The scalar factors of the elementary reflectors that define
           Q1.

WORK

          WORK is DOUBLE PRECISION array, dimension (LWORK)

LWORK

          LWORK is INTEGER
           The dimension of the array WORK. LWORK >= M-Q.

           If LWORK = -1, then a workspace query is assumed; the routine
           only calculates the optimal size of the WORK array, returns
           this value as the first entry of the WORK array, and no error
           message related to LWORK is issued by XERBLA.

INFO

          INFO is INTEGER
           = 0:  successful exit.
           < 0:  if INFO = -i, the i-th argument had an illegal value.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Further Details:

  The upper-bidiagonal blocks B11, B21 are represented implicitly by
  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
  in each bidiagonal band is a product of a sine or cosine of a THETA
  with a sine or cosine of a PHI. See [1] or DORCSD for details.

  P1, P2, and Q1 are represented as products of elementary reflectors.
  See DORCSD2BY1 for details on generating P1, P2, and Q1 using DORGQR
  and DORGLQ.

References:

[1] Brian D. Sutton. Computing the complete CS decomposition. Numer. Algorithms, 50(1):33-65, 2009.

Definition at line 201 of file dorbdb1.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page dorbdb1(3) is an alias of dorbdb1.f(3).

Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK