dlatdf.f man page

dlatdf.f —

Synopsis

Functions/Subroutines

subroutine dlatdf (IJOB, N, Z, LDZ, RHS, RDSUM, RDSCAL, IPIV, JPIV)
DLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.

Function/Subroutine Documentation

subroutine dlatdf (integerIJOB, integerN, double precision, dimension( ldz, * )Z, integerLDZ, double precision, dimension( * )RHS, double precisionRDSUM, double precisionRDSCAL, integer, dimension( * )IPIV, integer, dimension( * )JPIV)

DLATDF uses the LU factorization of the n-by-n matrix computed by sgetc2 and computes a contribution to the reciprocal Dif-estimate.

Purpose:

DLATDF uses the LU factorization of the n-by-n matrix Z computed by
DGETC2 and computes a contribution to the reciprocal Dif-estimate
by solving Z * x = b for x, and choosing the r.h.s. b such that
the norm of x is as large as possible. On entry RHS = b holds the
contribution from earlier solved sub-systems, and on return RHS = x.

The factorization of Z returned by DGETC2 has the form Z = P*L*U*Q,
where P and Q are permutation matrices. L is lower triangular with
unit diagonal elements and U is upper triangular.

Parameters:

IJOB

IJOB is INTEGER
IJOB = 2: First compute an approximative null-vector e
    of Z using DGECON, e is normalized and solve for
    Zx = +-e - f with the sign giving the greater value
    of 2-norm(x). About 5 times as expensive as Default.
IJOB .ne. 2: Local look ahead strategy where all entries of
    the r.h.s. b is choosen as either +1 or -1 (Default).

N

N is INTEGER
The number of columns of the matrix Z.

Z

Z is DOUBLE PRECISION array, dimension (LDZ, N)
On entry, the LU part of the factorization of the n-by-n
matrix Z computed by DGETC2:  Z = P * L * U * Q

LDZ

LDZ is INTEGER
The leading dimension of the array Z.  LDA >= max(1, N).

RHS

RHS is DOUBLE PRECISION array, dimension (N)
On entry, RHS contains contributions from other subsystems.
On exit, RHS contains the solution of the subsystem with
entries acoording to the value of IJOB (see above).

RDSUM

RDSUM is DOUBLE PRECISION
On entry, the sum of squares of computed contributions to
the Dif-estimate under computation by DTGSYL, where the
scaling factor RDSCAL (see below) has been factored out.
On exit, the corresponding sum of squares updated with the
contributions from the current sub-system.
If TRANS = 'T' RDSUM is not touched.
NOTE: RDSUM only makes sense when DTGSY2 is called by STGSYL.

RDSCAL

RDSCAL is DOUBLE PRECISION
On entry, scaling factor used to prevent overflow in RDSUM.
On exit, RDSCAL is updated w.r.t. the current contributions
in RDSUM.
If TRANS = 'T', RDSCAL is not touched.
NOTE: RDSCAL only makes sense when DTGSY2 is called by
      DTGSYL.

IPIV

IPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= i <= N, row i of the
matrix has been interchanged with row IPIV(i).

JPIV

JPIV is INTEGER array, dimension (N).
The pivot indices; for 1 <= j <= N, column j of the
matrix has been interchanged with column JPIV(j).

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

September 2012

Further Details:

This routine is a further developed implementation of algorithm BSOLVE in [1] using complete pivoting in the LU factorization.

Contributors:

Bo Kagstrom and Peter Poromaa, Department of Computing Science, Umea University, S-901 87 Umea, Sweden.

References:

[1] Bo Kagstrom and Lars Westin,
    Generalized Schur Methods with Condition Estimators for
    Solving the Generalized Sylvester Equation, IEEE Transactions
    on Automatic Control, Vol. 34, No. 7, July 1989, pp 745-751.

[2] Peter Poromaa,
    On Efficient and Robust Estimators for the Separation
    between two Regular Matrix Pairs with Applications in
    Condition Estimation. Report IMINF-95.05, Departement of
    Computing Science, Umea University, S-901 87 Umea, Sweden, 1995.

Definition at line 171 of file dlatdf.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

dlatdf(3) is an alias of dlatdf.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK