# dlaswlq.f - Man Page

## Synopsis

### Functions/Subroutines

subroutine dlaswlq (M, N, MB, NB, A, LDA, T, LDT, WORK, LWORK, INFO)
DLASWLQ

## Function/Subroutine Documentation

### subroutine dlaswlq (integer M, integer N, integer MB, integer NB, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( ldt, *) T, integer LDT, double precision, dimension( * ) WORK, integer LWORK, integer INFO)

DLASWLQ

Purpose:

``` DLASWLQ computes a blocked Tall-Skinny LQ factorization of
a real M-by-N matrix A for M <= N:

A = ( L 0 ) *  Q,

where:

Q is a n-by-N orthogonal matrix, stored on exit in an implicit
form in the elements above the diagonal of the array A and in
the elements of the array T;
L is a lower-triangular M-by-M matrix stored on exit in
the elements on and below the diagonal of the array A.
0 is a M-by-(N-M) zero matrix, if M < N, and is not stored.```
Parameters

M

```          M is INTEGER
The number of rows of the matrix A.  M >= 0.```

N

```          N is INTEGER
The number of columns of the matrix A.  N >= M >= 0.```

MB

```          MB is INTEGER
The row block size to be used in the blocked QR.
M >= MB >= 1```

NB

```          NB is INTEGER
The column block size to be used in the blocked QR.
NB > M.```

A

```          A is DOUBLE PRECISION array, dimension (LDA,N)
On entry, the M-by-N matrix A.
On exit, the elements on and below the diagonal
of the array contain the N-by-N lower triangular matrix L;
the elements above the diagonal represent Q by the rows
of blocked V (see Further Details).```

LDA

```          LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,M).```

T

```          T is DOUBLE PRECISION array,
dimension (LDT, N * Number_of_row_blocks)
where Number_of_row_blocks = CEIL((N-M)/(NB-M))
The blocked upper triangular block reflectors stored in compact form
as a sequence of upper triangular blocks.
See Further Details below.```

LDT

```          LDT is INTEGER
The leading dimension of the array T.  LDT >= MB.```

WORK

`         (workspace) DOUBLE PRECISION array, dimension (MAX(1,LWORK))`

LWORK

```          The dimension of the array WORK.  LWORK >= MB*M.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.```

INFO

```          INFO is INTEGER
= 0:  successful exit
< 0:  if INFO = -i, the i-th argument had an illegal value```
Author

Univ. of Tennessee

Univ. of California Berkeley

NAG Ltd.

Further Details:

``` Short-Wide LQ (SWLQ) performs LQ by a sequence of orthogonal transformations,
representing Q as a product of other orthogonal matrices
Q = Q(1) * Q(2) * . . . * Q(k)
where each Q(i) zeros out upper diagonal entries of a block of NB rows of A:
Q(1) zeros out the upper diagonal entries of rows 1:NB of A
Q(2) zeros out the bottom MB-N rows of rows [1:M,NB+1:2*NB-M] of A
Q(3) zeros out the bottom MB-N rows of rows [1:M,2*NB-M+1:3*NB-2*M] of A
. . .

Q(1) is computed by GELQT, which represents Q(1) by Householder vectors
stored under the diagonal of rows 1:MB of A, and by upper triangular
block reflectors, stored in array T(1:LDT,1:N).

Q(i) for i>1 is computed by TPLQT, which represents Q(i) by Householder vectors
stored in columns [(i-1)*(NB-M)+M+1:i*(NB-M)+M] of A, and by upper triangular
block reflectors, stored in array T(1:LDT,(i-1)*M+1:i*M).
The last Q(k) may use fewer rows.

For more details of the overall algorithm, see the description of
Sequential TSQR in Section 2.2 of [1].

[1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations,”
J. Demmel, L. Grigori, M. Hoemmen, J. Langou,
SIAM J. Sci. Comput, vol. 34, no. 1, 2012```

Definition at line 162 of file dlaswlq.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page dlaswlq(3) is an alias of dlaswlq.f(3).

Thu Apr 1 2021 Version 3.9.1 LAPACK