# dlasd2.f man page

dlasd2.f

## Synopsis

### Functions/Subroutines

subroutine **dlasd2** (NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT, LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX, IDXC, IDXQ, COLTYP, INFO)**DLASD2** merges the two sets of singular values together into a single sorted set. Used by sbdsdc.

## Function/Subroutine Documentation

### subroutine dlasd2 (integer NL, integer NR, integer SQRE, integer K, double precision, dimension( * ) D, double precision, dimension( * ) Z, double precision ALPHA, double precision BETA, double precision, dimension( ldu, * ) U, integer LDU, double precision, dimension( ldvt, * ) VT, integer LDVT, double precision, dimension( * ) DSIGMA, double precision, dimension( ldu2, * ) U2, integer LDU2, double precision, dimension( ldvt2, * ) VT2, integer LDVT2, integer, dimension( * ) IDXP, integer, dimension( * ) IDX, integer, dimension( * ) IDXC, integer, dimension( * ) IDXQ, integer, dimension( * ) COLTYP, integer INFO)

**DLASD2** merges the two sets of singular values together into a single sorted set. Used by sbdsdc.

**Purpose:**

DLASD2 merges the two sets of singular values together into a single sorted set. Then it tries to deflate the size of the problem. There are two ways in which deflation can occur: when two or more singular values are close together or if there is a tiny entry in the Z vector. For each such occurrence the order of the related secular equation problem is reduced by one. DLASD2 is called from DLASD1.

**Parameters:**-
*NL*NL is INTEGER The row dimension of the upper block. NL >= 1.

*NR*NR is INTEGER The row dimension of the lower block. NR >= 1.

*SQRE*SQRE is INTEGER = 0: the lower block is an NR-by-NR square matrix. = 1: the lower block is an NR-by-(NR+1) rectangular matrix. The bidiagonal matrix has N = NL + NR + 1 rows and M = N + SQRE >= N columns.

*K*K is INTEGER Contains the dimension of the non-deflated matrix, This is the order of the related secular equation. 1 <= K <=N.

*D*D is DOUBLE PRECISION array, dimension(N) On entry D contains the singular values of the two submatrices to be combined. On exit D contains the trailing (N-K) updated singular values (those which were deflated) sorted into increasing order.

*Z*Z is DOUBLE PRECISION array, dimension(N) On exit Z contains the updating row vector in the secular equation.

*ALPHA*ALPHA is DOUBLE PRECISION Contains the diagonal element associated with the added row.

*BETA*BETA is DOUBLE PRECISION Contains the off-diagonal element associated with the added row.

*U*U is DOUBLE PRECISION array, dimension(LDU,N) On entry U contains the left singular vectors of two submatrices in the two square blocks with corners at (1,1), (NL, NL), and (NL+2, NL+2), (N,N). On exit U contains the trailing (N-K) updated left singular vectors (those which were deflated) in its last N-K columns.

*LDU*LDU is INTEGER The leading dimension of the array U. LDU >= N.

*VT*VT is DOUBLE PRECISION array, dimension(LDVT,M) On entry VT**T contains the right singular vectors of two submatrices in the two square blocks with corners at (1,1), (NL+1, NL+1), and (NL+2, NL+2), (M,M). On exit VT**T contains the trailing (N-K) updated right singular vectors (those which were deflated) in its last N-K columns. In case SQRE =1, the last row of VT spans the right null space.

*LDVT*LDVT is INTEGER The leading dimension of the array VT. LDVT >= M.

*DSIGMA*DSIGMA is DOUBLE PRECISION array, dimension (N) Contains a copy of the diagonal elements (K-1 singular values and one zero) in the secular equation.

*U2*U2 is DOUBLE PRECISION array, dimension(LDU2,N) Contains a copy of the first K-1 left singular vectors which will be used by DLASD3 in a matrix multiply (DGEMM) to solve for the new left singular vectors. U2 is arranged into four blocks. The first block contains a column with 1 at NL+1 and zero everywhere else; the second block contains non-zero entries only at and above NL; the third contains non-zero entries only below NL+1; and the fourth is dense.

*LDU2*LDU2 is INTEGER The leading dimension of the array U2. LDU2 >= N.

*VT2*VT2 is DOUBLE PRECISION array, dimension(LDVT2,N) VT2**T contains a copy of the first K right singular vectors which will be used by DLASD3 in a matrix multiply (DGEMM) to solve for the new right singular vectors. VT2 is arranged into three blocks. The first block contains a row that corresponds to the special 0 diagonal element in SIGMA; the second block contains non-zeros only at and before NL +1; the third block contains non-zeros only at and after NL +2.

*LDVT2*LDVT2 is INTEGER The leading dimension of the array VT2. LDVT2 >= M.

*IDXP*IDXP is INTEGER array, dimension(N) This will contain the permutation used to place deflated values of D at the end of the array. On output IDXP(2:K) points to the nondeflated D-values and IDXP(K+1:N) points to the deflated singular values.

*IDX*IDX is INTEGER array, dimension(N) This will contain the permutation used to sort the contents of D into ascending order.

*IDXC*IDXC is INTEGER array, dimension(N) This will contain the permutation used to arrange the columns of the deflated U matrix into three groups: the first group contains non-zero entries only at and above NL, the second contains non-zero entries only below NL+2, and the third is dense.

*IDXQ*IDXQ is INTEGER array, dimension(N) This contains the permutation which separately sorts the two sub-problems in D into ascending order. Note that entries in the first hlaf of this permutation must first be moved one position backward; and entries in the second half must first have NL+1 added to their values.

*COLTYP*COLTYP is INTEGER array, dimension(N) As workspace, this will contain a label which will indicate which of the following types a column in the U2 matrix or a row in the VT2 matrix is: 1 : non-zero in the upper half only 2 : non-zero in the lower half only 3 : dense 4 : deflated On exit, it is an array of dimension 4, with COLTYP(I) being the dimension of the I-th type columns.

*INFO*INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value.

**Author:**-
Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**June 2017

**Contributors:**Ming Gu and Huan Ren, Computer Science Division, University of California at Berkeley, USA

Definition at line 271 of file dlasd2.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page dlasd2(3) is an alias of dlasd2.f(3).