dlalsd.f - Man Page
SRC/dlalsd.f
Synopsis
Functions/Subroutines
subroutine dlalsd (uplo, smlsiz, n, nrhs, d, e, b, ldb, rcond, rank, work, iwork, info)
DLALSD uses the singular value decomposition of A to solve the least squares problem.
Function/Subroutine Documentation
subroutine dlalsd (character uplo, integer smlsiz, integer n, integer nrhs, double precision, dimension( * ) d, double precision, dimension( * ) e, double precision, dimension( ldb, * ) b, integer ldb, double precision rcond, integer rank, double precision, dimension( * ) work, integer, dimension( * ) iwork, integer info)
DLALSD uses the singular value decomposition of A to solve the least squares problem.
Purpose:
DLALSD uses the singular value decomposition of A to solve the least squares problem of finding X to minimize the Euclidean norm of each column of A*X-B, where A is N-by-N upper bidiagonal, and X and B are N-by-NRHS. The solution X overwrites B. The singular values of A smaller than RCOND times the largest singular value are treated as zero in solving the least squares problem; in this case a minimum norm solution is returned. The actual singular values are returned in D in ascending order.
- Parameters
UPLO
UPLO is CHARACTER*1 = 'U': D and E define an upper bidiagonal matrix. = 'L': D and E define a lower bidiagonal matrix.
SMLSIZ
SMLSIZ is INTEGER The maximum size of the subproblems at the bottom of the computation tree.
N
N is INTEGER The dimension of the bidiagonal matrix. N >= 0.
NRHS
NRHS is INTEGER The number of columns of B. NRHS must be at least 1.
D
D is DOUBLE PRECISION array, dimension (N) On entry D contains the main diagonal of the bidiagonal matrix. On exit, if INFO = 0, D contains its singular values.
E
E is DOUBLE PRECISION array, dimension (N-1) Contains the super-diagonal entries of the bidiagonal matrix. On exit, E has been destroyed.
B
B is DOUBLE PRECISION array, dimension (LDB,NRHS) On input, B contains the right hand sides of the least squares problem. On output, B contains the solution X.
LDB
LDB is INTEGER The leading dimension of B in the calling subprogram. LDB must be at least max(1,N).
RCOND
RCOND is DOUBLE PRECISION The singular values of A less than or equal to RCOND times the largest singular value are treated as zero in solving the least squares problem. If RCOND is negative, machine precision is used instead. For example, if diag(S)*X=B were the least squares problem, where diag(S) is a diagonal matrix of singular values, the solution would be X(i) = B(i) / S(i) if S(i) is greater than RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to RCOND*max(S).
RANK
RANK is INTEGER The number of singular values of A greater than RCOND times the largest singular value.
WORK
WORK is DOUBLE PRECISION array, dimension at least (9*N + 2*N*SMLSIZ + 8*N*NLVL + N*NRHS + (SMLSIZ+1)**2), where NLVL = max(0, INT(log_2 (N/(SMLSIZ+1))) + 1).
IWORK
IWORK is INTEGER array, dimension at least (3*N*NLVL + 11*N)
INFO
INFO is INTEGER = 0: successful exit. < 0: if INFO = -i, the i-th argument had an illegal value. > 0: The algorithm failed to compute a singular value while working on the submatrix lying in rows and columns INFO/(N+1) through MOD(INFO,N+1).
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
- Contributors:
Ming Gu and Ren-Cang Li, Computer Science Division, University of California at Berkeley, USA
Osni Marques, LBNL/NERSC, USA
Definition at line 171 of file dlalsd.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page dlalsd(3) is an alias of dlalsd.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK