dlaic1.f man page

dlaic1.f —

Synopsis

Functions/Subroutines

subroutine dlaic1 (JOB, J, X, SEST, W, GAMMA, SESTPR, S, C)
DLAIC1 applies one step of incremental condition estimation.

Function/Subroutine Documentation

subroutine dlaic1 (integerJOB, integerJ, double precision, dimension( j )X, double precisionSEST, double precision, dimension( j )W, double precisionGAMMA, double precisionSESTPR, double precisionS, double precisionC)

DLAIC1 applies one step of incremental condition estimation.  

Purpose:

 DLAIC1 applies one step of incremental condition estimation in
 its simplest version:

 Let x, twonorm(x) = 1, be an approximate singular vector of an j-by-j
 lower triangular matrix L, such that
          twonorm(L*x) = sest
 Then DLAIC1 computes sestpr, s, c such that
 the vector
                 [ s*x ]
          xhat = [  c  ]
 is an approximate singular vector of
                 [ L       0  ]
          Lhat = [ w**T gamma ]
 in the sense that
          twonorm(Lhat*xhat) = sestpr.

 Depending on JOB, an estimate for the largest or smallest singular
 value is computed.

 Note that [s c]**T and sestpr**2 is an eigenpair of the system

     diag(sest*sest, 0) + [alpha  gamma] * [ alpha ]
                                           [ gamma ]

 where  alpha =  x**T*w.
Parameters:

JOB

          JOB is INTEGER
          = 1: an estimate for the largest singular value is computed.
          = 2: an estimate for the smallest singular value is computed.

J

          J is INTEGER
          Length of X and W

X

          X is DOUBLE PRECISION array, dimension (J)
          The j-vector x.

SEST

          SEST is DOUBLE PRECISION
          Estimated singular value of j by j matrix L

W

          W is DOUBLE PRECISION array, dimension (J)
          The j-vector w.

GAMMA

          GAMMA is DOUBLE PRECISION
          The diagonal element gamma.

SESTPR

          SESTPR is DOUBLE PRECISION
          Estimated singular value of (j+1) by (j+1) matrix Lhat.

S

          S is DOUBLE PRECISION
          Sine needed in forming xhat.

C

          C is DOUBLE PRECISION
          Cosine needed in forming xhat.
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

September 2012

Definition at line 135 of file dlaic1.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

dlaic1(3) is an alias of dlaic1.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK