dla_gbamv.f man page

dla_gbamv.f

Synopsis

Functions/Subroutines

subroutine dla_gbamv (TRANS, M, N, KL, KU, ALPHA, AB, LDAB, X, INCX, BETA, Y, INCY)
DLA_GBAMV performs a matrix-vector operation to calculate error bounds.

Function/Subroutine Documentation

subroutine dla_gbamv (integer TRANS, integer M, integer N, integer KL, integer KU, double precision ALPHA, double precision, dimension( ldab, * ) AB, integer LDAB, double precision, dimension( * ) X, integer INCX, double precision BETA, double precision, dimension( * ) Y, integer INCY)

DLA_GBAMV performs a matrix-vector operation to calculate error bounds.  

Purpose:

 DLA_GBAMV  performs one of the matrix-vector operations

         y := alpha*abs(A)*abs(x) + beta*abs(y),
    or   y := alpha*abs(A)**T*abs(x) + beta*abs(y),

 where alpha and beta are scalars, x and y are vectors and A is an
 m by n matrix.

 This function is primarily used in calculating error bounds.
 To protect against underflow during evaluation, components in
 the resulting vector are perturbed away from zero by (N+1)
 times the underflow threshold.  To prevent unnecessarily large
 errors for block-structure embedded in general matrices,
 "symbolically" zero components are not perturbed.  A zero
 entry is considered "symbolic" if all multiplications involved
 in computing that entry have at least one zero multiplicand.
Parameters:

TRANS

          TRANS is INTEGER
           On entry, TRANS specifies the operation to be performed as
           follows:

             BLAS_NO_TRANS      y := alpha*abs(A)*abs(x) + beta*abs(y)
             BLAS_TRANS         y := alpha*abs(A**T)*abs(x) + beta*abs(y)
             BLAS_CONJ_TRANS    y := alpha*abs(A**T)*abs(x) + beta*abs(y)

           Unchanged on exit.

M

          M is INTEGER
           On entry, M specifies the number of rows of the matrix A.
           M must be at least zero.
           Unchanged on exit.

N

          N is INTEGER
           On entry, N specifies the number of columns of the matrix A.
           N must be at least zero.
           Unchanged on exit.

KL

          KL is INTEGER
           The number of subdiagonals within the band of A.  KL >= 0.

KU

          KU is INTEGER
           The number of superdiagonals within the band of A.  KU >= 0.

ALPHA

          ALPHA is DOUBLE PRECISION
           On entry, ALPHA specifies the scalar alpha.
           Unchanged on exit.

AB

          AB is DOUBLE PRECISION array, dimension ( LDAB, n )
           Before entry, the leading m by n part of the array AB must
           contain the matrix of coefficients.
           Unchanged on exit.

LDAB

          LDAB is INTEGER
           On entry, LDA specifies the first dimension of AB as declared
           in the calling (sub) program. LDAB must be at least
           max( 1, m ).
           Unchanged on exit.

X

          X is DOUBLE PRECISION array, dimension
           ( 1 + ( n - 1 )*abs( INCX ) ) when TRANS = 'N' or 'n'
           and at least
           ( 1 + ( m - 1 )*abs( INCX ) ) otherwise.
           Before entry, the incremented array X must contain the
           vector x.
           Unchanged on exit.

INCX

          INCX is INTEGER
           On entry, INCX specifies the increment for the elements of
           X. INCX must not be zero.
           Unchanged on exit.

BETA

          BETA is DOUBLE PRECISION
           On entry, BETA specifies the scalar beta. When BETA is
           supplied as zero then Y need not be set on input.
           Unchanged on exit.

Y

          Y is DOUBLE PRECISION array, dimension
           ( 1 + ( m - 1 )*abs( INCY ) ) when TRANS = 'N' or 'n'
           and at least
           ( 1 + ( n - 1 )*abs( INCY ) ) otherwise.
           Before entry with BETA non-zero, the incremented array Y
           must contain the vector y. On exit, Y is overwritten by the
           updated vector y.

INCY

          INCY is INTEGER
           On entry, INCY specifies the increment for the elements of
           Y. INCY must not be zero.
           Unchanged on exit.

  Level 2 Blas routine.
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

June 2017

Definition at line 187 of file dla_gbamv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page dla_gbamv(3) is an alias of dla_gbamv.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK