dgsvts3.f - Man Page
TESTING/EIG/dgsvts3.f
Synopsis
Functions/Subroutines
subroutine dgsvts3 (m, p, n, a, af, lda, b, bf, ldb, u, ldu, v, ldv, q, ldq, alpha, beta, r, ldr, iwork, work, lwork, rwork, result)
DGSVTS3
Function/Subroutine Documentation
subroutine dgsvts3 (integer m, integer p, integer n, double precision, dimension( lda, * ) a, double precision, dimension( lda, * ) af, integer lda, double precision, dimension( ldb, * ) b, double precision, dimension( ldb, * ) bf, integer ldb, double precision, dimension( ldu, * ) u, integer ldu, double precision, dimension( ldv, * ) v, integer ldv, double precision, dimension( ldq, * ) q, integer ldq, double precision, dimension( * ) alpha, double precision, dimension( * ) beta, double precision, dimension( ldr, * ) r, integer ldr, integer, dimension( * ) iwork, double precision, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( 6 ) result)
DGSVTS3
Purpose:
DGSVTS3 tests DGGSVD3, which computes the GSVD of an M-by-N matrix A and a P-by-N matrix B: U'*A*Q = D1*R and V'*B*Q = D2*R.
- Parameters
M
M is INTEGER The number of rows of the matrix A. M >= 0.
P
P is INTEGER The number of rows of the matrix B. P >= 0.
N
N is INTEGER The number of columns of the matrices A and B. N >= 0.
A
A is DOUBLE PRECISION array, dimension (LDA,M) The M-by-N matrix A.
AF
AF is DOUBLE PRECISION array, dimension (LDA,N) Details of the GSVD of A and B, as returned by DGGSVD3, see DGGSVD3 for further details.
LDA
LDA is INTEGER The leading dimension of the arrays A and AF. LDA >= max( 1,M ).
B
B is DOUBLE PRECISION array, dimension (LDB,P) On entry, the P-by-N matrix B.
BF
BF is DOUBLE PRECISION array, dimension (LDB,N) Details of the GSVD of A and B, as returned by DGGSVD3, see DGGSVD3 for further details.
LDB
LDB is INTEGER The leading dimension of the arrays B and BF. LDB >= max(1,P).
U
U is DOUBLE PRECISION array, dimension(LDU,M) The M by M orthogonal matrix U.
LDU
LDU is INTEGER The leading dimension of the array U. LDU >= max(1,M).
V
V is DOUBLE PRECISION array, dimension(LDV,M) The P by P orthogonal matrix V.
LDV
LDV is INTEGER The leading dimension of the array V. LDV >= max(1,P).
Q
Q is DOUBLE PRECISION array, dimension(LDQ,N) The N by N orthogonal matrix Q.
LDQ
LDQ is INTEGER The leading dimension of the array Q. LDQ >= max(1,N).
ALPHA
ALPHA is DOUBLE PRECISION array, dimension (N)
BETA
BETA is DOUBLE PRECISION array, dimension (N) The generalized singular value pairs of A and B, the “diagonal” matrices D1 and D2 are constructed from ALPHA and BETA, see subroutine DGGSVD3 for details.
R
R is DOUBLE PRECISION array, dimension(LDQ,N) The upper triangular matrix R.
LDR
LDR is INTEGER The leading dimension of the array R. LDR >= max(1,N).
IWORK
IWORK is INTEGER array, dimension (N)
WORK
WORK is DOUBLE PRECISION array, dimension (LWORK)
LWORK
LWORK is INTEGER The dimension of the array WORK, LWORK >= max(M,P,N)*max(M,P,N).
RWORK
RWORK is DOUBLE PRECISION array, dimension (max(M,P,N))
RESULT
RESULT is DOUBLE PRECISION array, dimension (6) The test ratios: RESULT(1) = norm( U'*A*Q - D1*R ) / ( MAX(M,N)*norm(A)*ULP) RESULT(2) = norm( V'*B*Q - D2*R ) / ( MAX(P,N)*norm(B)*ULP) RESULT(3) = norm( I - U'*U ) / ( M*ULP ) RESULT(4) = norm( I - V'*V ) / ( P*ULP ) RESULT(5) = norm( I - Q'*Q ) / ( N*ULP ) RESULT(6) = 0 if ALPHA is in decreasing order; = ULPINV otherwise.
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 207 of file dgsvts3.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page dgsvts3(3) is an alias of dgsvts3.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK