# dgerq2.f man page

dgerq2.f

## Synopsis

### Functions/Subroutines

subroutine **dgerq2** (M, **N**, A, **LDA**, TAU, WORK, INFO)**DGERQ2** computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.

## Function/Subroutine Documentation

### subroutine dgerq2 (integer M, integer N, double precision, dimension( lda, * ) A, integer LDA, double precision, dimension( * ) TAU, double precision, dimension( * ) WORK, integer INFO)

**DGERQ2** computes the RQ factorization of a general rectangular matrix using an unblocked algorithm.

**Purpose:**

DGERQ2 computes an RQ factorization of a real m by n matrix A: A = R * Q.

**Parameters:**-
*M*M is INTEGER The number of rows of the matrix A. M >= 0.

*N*N is INTEGER The number of columns of the matrix A. N >= 0.

*A*A is DOUBLE PRECISION array, dimension (LDA,N) On entry, the m by n matrix A. On exit, if m <= n, the upper triangle of the subarray A(1:m,n-m+1:n) contains the m by m upper triangular matrix R; if m >= n, the elements on and above the (m-n)-th subdiagonal contain the m by n upper trapezoidal matrix R; the remaining elements, with the array TAU, represent the orthogonal matrix Q as a product of elementary reflectors (see Further Details).

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).

*TAU*TAU is DOUBLE PRECISION array, dimension (min(M,N)) The scalar factors of the elementary reflectors (see Further Details).

*WORK*WORK is DOUBLE PRECISION array, dimension (M)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author:**-
Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**December 2016

**Further Details:**

The matrix Q is represented as a product of elementary reflectors Q = H(1) H(2) . . . H(k), where k = min(m,n). Each H(i) has the form H(i) = I - tau * v * v**T where tau is a real scalar, and v is a real vector with v(n-k+i+1:n) = 0 and v(n-k+i) = 1; v(1:n-k+i-1) is stored on exit in A(m-k+i,1:n-k+i-1), and tau in TAU(i).

Definition at line 125 of file dgerq2.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page dgerq2(3) is an alias of dgerq2.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK