ddrvst.f - Man Page
TESTING/EIG/ddrvst.f
Synopsis
Functions/Subroutines
subroutine ddrvst (nsizes, nn, ntypes, dotype, iseed, thresh, nounit, a, lda, d1, d2, d3, d4, eveigs, wa1, wa2, wa3, u, ldu, v, tau, z, work, lwork, iwork, liwork, result, info)
DDRVST
Function/Subroutine Documentation
subroutine ddrvst (integer nsizes, integer, dimension( * ) nn, integer ntypes, logical, dimension( * ) dotype, integer, dimension( 4 ) iseed, double precision thresh, integer nounit, double precision, dimension( lda, * ) a, integer lda, double precision, dimension( * ) d1, double precision, dimension( * ) d2, double precision, dimension( * ) d3, double precision, dimension( * ) d4, double precision, dimension( * ) eveigs, double precision, dimension( * ) wa1, double precision, dimension( * ) wa2, double precision, dimension( * ) wa3, double precision, dimension( ldu, * ) u, integer ldu, double precision, dimension( ldu, * ) v, double precision, dimension( * ) tau, double precision, dimension( ldu, * ) z, double precision, dimension( * ) work, integer lwork, integer, dimension( * ) iwork, integer liwork, double precision, dimension( * ) result, integer info)
DDRVST
Purpose:
DDRVST checks the symmetric eigenvalue problem drivers. DSTEV computes all eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix. DSTEVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix. DSTEVR computes selected eigenvalues and, optionally, eigenvectors of a real symmetric tridiagonal matrix using the Relatively Robust Representation where it can. DSYEV computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix. DSYEVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix. DSYEVR computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix using the Relatively Robust Representation where it can. DSPEV computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage. DSPEVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage. DSBEV computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix. DSBEVX computes selected eigenvalues and, optionally, eigenvectors of a real symmetric band matrix. DSYEVD computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix using a divide and conquer algorithm. DSPEVD computes all eigenvalues and, optionally, eigenvectors of a real symmetric matrix in packed storage, using a divide and conquer algorithm. DSBEVD computes all eigenvalues and, optionally, eigenvectors of a real symmetric band matrix, using a divide and conquer algorithm. When DDRVST is called, a number of matrix 'sizes' ('n's') and a number of matrix 'types' are specified. For each size ('n') and each type of matrix, one matrix will be generated and used to test the appropriate drivers. For each matrix and each driver routine called, the following tests will be performed: (1) | A - Z D Z' | / ( |A| n ulp ) (2) | I - Z Z' | / ( n ulp ) (3) | D1 - D2 | / ( |D1| ulp ) where Z is the matrix of eigenvectors returned when the eigenvector option is given and D1 and D2 are the eigenvalues returned with and without the eigenvector option. The 'sizes' are specified by an array NN(1:NSIZES); the value of each element NN(j) specifies one size. The 'types' are specified by a logical array DOTYPE( 1:NTYPES ); if DOTYPE(j) is .TRUE., then matrix type 'j' will be generated. Currently, the list of possible types is: (1) The zero matrix. (2) The identity matrix. (3) A diagonal matrix with evenly spaced eigenvalues 1, ..., ULP and random signs. (ULP = (first number larger than 1) - 1 ) (4) A diagonal matrix with geometrically spaced eigenvalues 1, ..., ULP and random signs. (5) A diagonal matrix with 'clustered' eigenvalues 1, ULP, ..., ULP and random signs. (6) Same as (4), but multiplied by SQRT( overflow threshold ) (7) Same as (4), but multiplied by SQRT( underflow threshold ) (8) A matrix of the form U' D U, where U is orthogonal and D has evenly spaced entries 1, ..., ULP with random signs on the diagonal. (9) A matrix of the form U' D U, where U is orthogonal and D has geometrically spaced entries 1, ..., ULP with random signs on the diagonal. (10) A matrix of the form U' D U, where U is orthogonal and D has 'clustered' entries 1, ULP,..., ULP with random signs on the diagonal. (11) Same as (8), but multiplied by SQRT( overflow threshold ) (12) Same as (8), but multiplied by SQRT( underflow threshold ) (13) Symmetric matrix with random entries chosen from (-1,1). (14) Same as (13), but multiplied by SQRT( overflow threshold ) (15) Same as (13), but multiplied by SQRT( underflow threshold ) (16) A band matrix with half bandwidth randomly chosen between 0 and N-1, with evenly spaced eigenvalues 1, ..., ULP with random signs. (17) Same as (16), but multiplied by SQRT( overflow threshold ) (18) Same as (16), but multiplied by SQRT( underflow threshold )
NSIZES INTEGER The number of sizes of matrices to use. If it is zero, DDRVST does nothing. It must be at least zero. Not modified. NN INTEGER array, dimension (NSIZES) An array containing the sizes to be used for the matrices. Zero values will be skipped. The values must be at least zero. Not modified. NTYPES INTEGER The number of elements in DOTYPE. If it is zero, DDRVST does nothing. It must be at least zero. If it is MAXTYP+1 and NSIZES is 1, then an additional type, MAXTYP+1 is defined, which is to use whatever matrix is in A. This is only useful if DOTYPE(1:MAXTYP) is .FALSE. and DOTYPE(MAXTYP+1) is .TRUE. . Not modified. DOTYPE LOGICAL array, dimension (NTYPES) If DOTYPE(j) is .TRUE., then for each size in NN a matrix of that size and of type j will be generated. If NTYPES is smaller than the maximum number of types defined (PARAMETER MAXTYP), then types NTYPES+1 through MAXTYP will not be generated. If NTYPES is larger than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES) will be ignored. Not modified. ISEED INTEGER array, dimension (4) On entry ISEED specifies the seed of the random number generator. The array elements should be between 0 and 4095; if not they will be reduced mod 4096. Also, ISEED(4) must be odd. The random number generator uses a linear congruential sequence limited to small integers, and so should produce machine independent random numbers. The values of ISEED are changed on exit, and can be used in the next call to DDRVST to continue the same random number sequence. Modified. THRESH DOUBLE PRECISION A test will count as 'failed' if the 'error', computed as described above, exceeds THRESH. Note that the error is scaled to be O(1), so THRESH should be a reasonably small multiple of 1, e.g., 10 or 100. In particular, it should not depend on the precision (single vs. double) or the size of the matrix. It must be at least zero. Not modified. NOUNIT INTEGER The FORTRAN unit number for printing out error messages (e.g., if a routine returns IINFO not equal to 0.) Not modified. A DOUBLE PRECISION array, dimension (LDA , max(NN)) Used to hold the matrix whose eigenvalues are to be computed. On exit, A contains the last matrix actually used. Modified. LDA INTEGER The leading dimension of A. It must be at least 1 and at least max( NN ). Not modified. D1 DOUBLE PRECISION array, dimension (max(NN)) The eigenvalues of A, as computed by DSTEQR simultaneously with Z. On exit, the eigenvalues in D1 correspond with the matrix in A. Modified. D2 DOUBLE PRECISION array, dimension (max(NN)) The eigenvalues of A, as computed by DSTEQR if Z is not computed. On exit, the eigenvalues in D2 correspond with the matrix in A. Modified. D3 DOUBLE PRECISION array, dimension (max(NN)) The eigenvalues of A, as computed by DSTERF. On exit, the eigenvalues in D3 correspond with the matrix in A. Modified. D4 DOUBLE PRECISION array, dimension EVEIGS DOUBLE PRECISION array, dimension (max(NN)) The eigenvalues as computed by DSTEV('N', ... ) (I reserve the right to change this to the output of whichever algorithm computes the most accurate eigenvalues). WA1 DOUBLE PRECISION array, dimension WA2 DOUBLE PRECISION array, dimension WA3 DOUBLE PRECISION array, dimension U DOUBLE PRECISION array, dimension (LDU, max(NN)) The orthogonal matrix computed by DSYTRD + DORGTR. Modified. LDU INTEGER The leading dimension of U, Z, and V. It must be at least 1 and at least max( NN ). Not modified. V DOUBLE PRECISION array, dimension (LDU, max(NN)) The Housholder vectors computed by DSYTRD in reducing A to tridiagonal form. Modified. TAU DOUBLE PRECISION array, dimension (max(NN)) The Householder factors computed by DSYTRD in reducing A to tridiagonal form. Modified. Z DOUBLE PRECISION array, dimension (LDU, max(NN)) The orthogonal matrix of eigenvectors computed by DSTEQR, DPTEQR, and DSTEIN. Modified. WORK DOUBLE PRECISION array, dimension (LWORK) Workspace. Modified. LWORK INTEGER The number of entries in WORK. This must be at least 1 + 4 * Nmax + 2 * Nmax * lg Nmax + 4 * Nmax**2 where Nmax = max( NN(j), 2 ) and lg = log base 2. Not modified. IWORK INTEGER array, dimension (6 + 6*Nmax + 5 * Nmax * lg Nmax ) where Nmax = max( NN(j), 2 ) and lg = log base 2. Workspace. Modified. RESULT DOUBLE PRECISION array, dimension (105) The values computed by the tests described above. The values are currently limited to 1/ulp, to avoid overflow. Modified. INFO INTEGER If 0, then everything ran OK. -1: NSIZES < 0 -2: Some NN(j) < 0 -3: NTYPES < 0 -5: THRESH < 0 -9: LDA < 1 or LDA < NMAX, where NMAX is max( NN(j) ). -16: LDU < 1 or LDU < NMAX. -21: LWORK too small. If DLATMR, DLATMS, DSYTRD, DORGTR, DSTEQR, DSTERF, or DORMTR returns an error code, the absolute value of it is returned. Modified. ----------------------------------------------------------------------- Some Local Variables and Parameters: ---- ----- --------- --- ---------- ZERO, ONE Real 0 and 1. MAXTYP The number of types defined. NTEST The number of tests performed, or which can be performed so far, for the current matrix. NTESTT The total number of tests performed so far. NMAX Largest value in NN. NMATS The number of matrices generated so far. NERRS The number of tests which have exceeded THRESH so far (computed by DLAFTS). COND, IMODE Values to be passed to the matrix generators. ANORM Norm of A; passed to matrix generators. OVFL, UNFL Overflow and underflow thresholds. ULP, ULPINV Finest relative precision and its inverse. RTOVFL, RTUNFL Square roots of the previous 2 values. The following four arrays decode JTYPE: KTYPE(j) The general type (1-10) for type 'j'. KMODE(j) The MODE value to be passed to the matrix generator for type 'j'. KMAGN(j) The order of magnitude ( O(1), O(overflow^(1/2) ), O(underflow^(1/2) ) The tests performed are: Routine tested 1= | A - U S U' | / ( |A| n ulp ) DSTEV('V', ... ) 2= | I - U U' | / ( n ulp ) DSTEV('V', ... ) 3= |D(with Z) - D(w/o Z)| / (|D| ulp) DSTEV('N', ... ) 4= | A - U S U' | / ( |A| n ulp ) DSTEVX('V','A', ... ) 5= | I - U U' | / ( n ulp ) DSTEVX('V','A', ... ) 6= |D(with Z) - EVEIGS| / (|D| ulp) DSTEVX('N','A', ... ) 7= | A - U S U' | / ( |A| n ulp ) DSTEVR('V','A', ... ) 8= | I - U U' | / ( n ulp ) DSTEVR('V','A', ... ) 9= |D(with Z) - EVEIGS| / (|D| ulp) DSTEVR('N','A', ... ) 10= | A - U S U' | / ( |A| n ulp ) DSTEVX('V','I', ... ) 11= | I - U U' | / ( n ulp ) DSTEVX('V','I', ... ) 12= |D(with Z) - D(w/o Z)| / (|D| ulp) DSTEVX('N','I', ... ) 13= | A - U S U' | / ( |A| n ulp ) DSTEVX('V','V', ... ) 14= | I - U U' | / ( n ulp ) DSTEVX('V','V', ... ) 15= |D(with Z) - D(w/o Z)| / (|D| ulp) DSTEVX('N','V', ... ) 16= | A - U S U' | / ( |A| n ulp ) DSTEVD('V', ... ) 17= | I - U U' | / ( n ulp ) DSTEVD('V', ... ) 18= |D(with Z) - EVEIGS| / (|D| ulp) DSTEVD('N', ... ) 19= | A - U S U' | / ( |A| n ulp ) DSTEVR('V','I', ... ) 20= | I - U U' | / ( n ulp ) DSTEVR('V','I', ... ) 21= |D(with Z) - D(w/o Z)| / (|D| ulp) DSTEVR('N','I', ... ) 22= | A - U S U' | / ( |A| n ulp ) DSTEVR('V','V', ... ) 23= | I - U U' | / ( n ulp ) DSTEVR('V','V', ... ) 24= |D(with Z) - D(w/o Z)| / (|D| ulp) DSTEVR('N','V', ... ) 25= | A - U S U' | / ( |A| n ulp ) DSYEV('L','V', ... ) 26= | I - U U' | / ( n ulp ) DSYEV('L','V', ... ) 27= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEV('L','N', ... ) 28= | A - U S U' | / ( |A| n ulp ) DSYEVX('L','V','A', ... ) 29= | I - U U' | / ( n ulp ) DSYEVX('L','V','A', ... ) 30= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVX('L','N','A', ... ) 31= | A - U S U' | / ( |A| n ulp ) DSYEVX('L','V','I', ... ) 32= | I - U U' | / ( n ulp ) DSYEVX('L','V','I', ... ) 33= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVX('L','N','I', ... ) 34= | A - U S U' | / ( |A| n ulp ) DSYEVX('L','V','V', ... ) 35= | I - U U' | / ( n ulp ) DSYEVX('L','V','V', ... ) 36= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVX('L','N','V', ... ) 37= | A - U S U' | / ( |A| n ulp ) DSPEV('L','V', ... ) 38= | I - U U' | / ( n ulp ) DSPEV('L','V', ... ) 39= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEV('L','N', ... ) 40= | A - U S U' | / ( |A| n ulp ) DSPEVX('L','V','A', ... ) 41= | I - U U' | / ( n ulp ) DSPEVX('L','V','A', ... ) 42= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVX('L','N','A', ... ) 43= | A - U S U' | / ( |A| n ulp ) DSPEVX('L','V','I', ... ) 44= | I - U U' | / ( n ulp ) DSPEVX('L','V','I', ... ) 45= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVX('L','N','I', ... ) 46= | A - U S U' | / ( |A| n ulp ) DSPEVX('L','V','V', ... ) 47= | I - U U' | / ( n ulp ) DSPEVX('L','V','V', ... ) 48= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVX('L','N','V', ... ) 49= | A - U S U' | / ( |A| n ulp ) DSBEV('L','V', ... ) 50= | I - U U' | / ( n ulp ) DSBEV('L','V', ... ) 51= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEV('L','N', ... ) 52= | A - U S U' | / ( |A| n ulp ) DSBEVX('L','V','A', ... ) 53= | I - U U' | / ( n ulp ) DSBEVX('L','V','A', ... ) 54= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVX('L','N','A', ... ) 55= | A - U S U' | / ( |A| n ulp ) DSBEVX('L','V','I', ... ) 56= | I - U U' | / ( n ulp ) DSBEVX('L','V','I', ... ) 57= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVX('L','N','I', ... ) 58= | A - U S U' | / ( |A| n ulp ) DSBEVX('L','V','V', ... ) 59= | I - U U' | / ( n ulp ) DSBEVX('L','V','V', ... ) 60= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVX('L','N','V', ... ) 61= | A - U S U' | / ( |A| n ulp ) DSYEVD('L','V', ... ) 62= | I - U U' | / ( n ulp ) DSYEVD('L','V', ... ) 63= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVD('L','N', ... ) 64= | A - U S U' | / ( |A| n ulp ) DSPEVD('L','V', ... ) 65= | I - U U' | / ( n ulp ) DSPEVD('L','V', ... ) 66= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVD('L','N', ... ) 67= | A - U S U' | / ( |A| n ulp ) DSBEVD('L','V', ... ) 68= | I - U U' | / ( n ulp ) DSBEVD('L','V', ... ) 69= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVD('L','N', ... ) 70= | A - U S U' | / ( |A| n ulp ) DSYEVR('L','V','A', ... ) 71= | I - U U' | / ( n ulp ) DSYEVR('L','V','A', ... ) 72= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVR('L','N','A', ... ) 73= | A - U S U' | / ( |A| n ulp ) DSYEVR('L','V','I', ... ) 74= | I - U U' | / ( n ulp ) DSYEVR('L','V','I', ... ) 75= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVR('L','N','I', ... ) 76= | A - U S U' | / ( |A| n ulp ) DSYEVR('L','V','V', ... ) 77= | I - U U' | / ( n ulp ) DSYEVR('L','V','V', ... ) 78= |D(with Z) - D(w/o Z)| / (|D| ulp) DSYEVR('L','N','V', ... ) Tests 25 through 78 are repeated (as tests 79 through 132) with UPLO='U' To be added in 1999 79= | A - U S U' | / ( |A| n ulp ) DSPEVR('L','V','A', ... ) 80= | I - U U' | / ( n ulp ) DSPEVR('L','V','A', ... ) 81= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVR('L','N','A', ... ) 82= | A - U S U' | / ( |A| n ulp ) DSPEVR('L','V','I', ... ) 83= | I - U U' | / ( n ulp ) DSPEVR('L','V','I', ... ) 84= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVR('L','N','I', ... ) 85= | A - U S U' | / ( |A| n ulp ) DSPEVR('L','V','V', ... ) 86= | I - U U' | / ( n ulp ) DSPEVR('L','V','V', ... ) 87= |D(with Z) - D(w/o Z)| / (|D| ulp) DSPEVR('L','N','V', ... ) 88= | A - U S U' | / ( |A| n ulp ) DSBEVR('L','V','A', ... ) 89= | I - U U' | / ( n ulp ) DSBEVR('L','V','A', ... ) 90= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVR('L','N','A', ... ) 91= | A - U S U' | / ( |A| n ulp ) DSBEVR('L','V','I', ... ) 92= | I - U U' | / ( n ulp ) DSBEVR('L','V','I', ... ) 93= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVR('L','N','I', ... ) 94= | A - U S U' | / ( |A| n ulp ) DSBEVR('L','V','V', ... ) 95= | I - U U' | / ( n ulp ) DSBEVR('L','V','V', ... ) 96= |D(with Z) - D(w/o Z)| / (|D| ulp) DSBEVR('L','N','V', ... )
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 449 of file ddrvst.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page ddrvst(3) is an alias of ddrvst.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK