dcsdts.f - Man Page
TESTING/EIG/dcsdts.f
Synopsis
Functions/Subroutines
subroutine dcsdts (m, p, q, x, xf, ldx, u1, ldu1, u2, ldu2, v1t, ldv1t, v2t, ldv2t, theta, iwork, work, lwork, rwork, result)
DCSDTS
Function/Subroutine Documentation
subroutine dcsdts (integer m, integer p, integer q, double precision, dimension( ldx, * ) x, double precision, dimension( ldx, * ) xf, integer ldx, double precision, dimension( ldu1, * ) u1, integer ldu1, double precision, dimension( ldu2, * ) u2, integer ldu2, double precision, dimension( ldv1t, * ) v1t, integer ldv1t, double precision, dimension( ldv2t, * ) v2t, integer ldv2t, double precision, dimension( * ) theta, integer, dimension( * ) iwork, double precision, dimension( lwork ) work, integer lwork, double precision, dimension( * ) rwork, double precision, dimension( 15 ) result)
DCSDTS
Purpose:
DCSDTS tests DORCSD, which, given an M-by-M partitioned orthogonal matrix X, Q M-Q X = [ X11 X12 ] P , [ X21 X22 ] M-P computes the CSD [ U1 ]**T * [ X11 X12 ] * [ V1 ] [ U2 ] [ X21 X22 ] [ V2 ] [ I 0 0 | 0 0 0 ] [ 0 C 0 | 0 -S 0 ] [ 0 0 0 | 0 0 -I ] = [---------------------] = [ D11 D12 ] , [ 0 0 0 | I 0 0 ] [ D21 D22 ] [ 0 S 0 | 0 C 0 ] [ 0 0 I | 0 0 0 ] and also DORCSD2BY1, which, given Q [ X11 ] P , [ X21 ] M-P computes the 2-by-1 CSD [ I 0 0 ] [ 0 C 0 ] [ 0 0 0 ] [ U1 ]**T * [ X11 ] * V1 = [----------] = [ D11 ] , [ U2 ] [ X21 ] [ 0 0 0 ] [ D21 ] [ 0 S 0 ] [ 0 0 I ]
- Parameters
M
M is INTEGER The number of rows of the matrix X. M >= 0.
P
P is INTEGER The number of rows of the matrix X11. P >= 0.
Q
Q is INTEGER The number of columns of the matrix X11. Q >= 0.
X
X is DOUBLE PRECISION array, dimension (LDX,M) The M-by-M matrix X.
XF
XF is DOUBLE PRECISION array, dimension (LDX,M) Details of the CSD of X, as returned by DORCSD; see DORCSD for further details.
LDX
LDX is INTEGER The leading dimension of the arrays X and XF. LDX >= max( 1,M ).
U1
U1 is DOUBLE PRECISION array, dimension(LDU1,P) The P-by-P orthogonal matrix U1.
LDU1
LDU1 is INTEGER The leading dimension of the array U1. LDU >= max(1,P).
U2
U2 is DOUBLE PRECISION array, dimension(LDU2,M-P) The (M-P)-by-(M-P) orthogonal matrix U2.
LDU2
LDU2 is INTEGER The leading dimension of the array U2. LDU >= max(1,M-P).
V1T
V1T is DOUBLE PRECISION array, dimension(LDV1T,Q) The Q-by-Q orthogonal matrix V1T.
LDV1T
LDV1T is INTEGER The leading dimension of the array V1T. LDV1T >= max(1,Q).
V2T
V2T is DOUBLE PRECISION array, dimension(LDV2T,M-Q) The (M-Q)-by-(M-Q) orthogonal matrix V2T.
LDV2T
LDV2T is INTEGER The leading dimension of the array V2T. LDV2T >= max(1,M-Q).
THETA
THETA is DOUBLE PRECISION array, dimension MIN(P,M-P,Q,M-Q) The CS values of X; the essentially diagonal matrices C and S are constructed from THETA; see subroutine DORCSD for details.
IWORK
IWORK is INTEGER array, dimension (M)
WORK
WORK is DOUBLE PRECISION array, dimension (LWORK)
LWORK
LWORK is INTEGER The dimension of the array WORK
RWORK
RWORK is DOUBLE PRECISION array
RESULT
RESULT is DOUBLE PRECISION array, dimension (15) The test ratios: First, the 2-by-2 CSD: RESULT(1) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) RESULT(2) = norm( U1'*X12*V2 - D12 ) / ( MAX(1,P,M-Q)*EPS2 ) RESULT(3) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) RESULT(4) = norm( U2'*X22*V2 - D22 ) / ( MAX(1,M-P,M-Q)*EPS2 ) RESULT(5) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP ) RESULT(6) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP ) RESULT(7) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP ) RESULT(8) = norm( I - V2T'*V2T ) / ( MAX(1,M-Q)*ULP ) RESULT(9) = 0 if THETA is in increasing order and all angles are in [0,pi/2]; = ULPINV otherwise. Then, the 2-by-1 CSD: RESULT(10) = norm( U1'*X11*V1 - D11 ) / ( MAX(1,P,Q)*EPS2 ) RESULT(11) = norm( U2'*X21*V1 - D21 ) / ( MAX(1,M-P,Q)*EPS2 ) RESULT(12) = norm( I - U1'*U1 ) / ( MAX(1,P)*ULP ) RESULT(13) = norm( I - U2'*U2 ) / ( MAX(1,M-P)*ULP ) RESULT(14) = norm( I - V1T'*V1T ) / ( MAX(1,Q)*ULP ) RESULT(15) = 0 if THETA is in increasing order and all angles are in [0,pi/2]; = ULPINV otherwise. ( EPS2 = MAX( norm( I - X'*X ) / M, ULP ). )
- Author
Univ. of Tennessee
Univ. of California Berkeley
Univ. of Colorado Denver
NAG Ltd.
Definition at line 226 of file dcsdts.f.
Author
Generated automatically by Doxygen for LAPACK from the source code.
Referenced By
The man page dcsdts(3) is an alias of dcsdts.f(3).
Tue Nov 28 2023 12:08:42 Version 3.12.0 LAPACK