# cunmrq.f man page

cunmrq.f —

## Synopsis

### Functions/Subroutines

subroutinecunmrq(SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC, WORK, LWORK, INFO)CUNMRQ

## Function/Subroutine Documentation

### subroutine cunmrq (characterSIDE, characterTRANS, integerM, integerN, integerK, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )TAU, complex, dimension( ldc, * )C, integerLDC, complex, dimension( * )WORK, integerLWORK, integerINFO)

**CUNMRQ**

**Purpose:**

```
CUNMRQ overwrites the general complex M-by-N matrix C with
SIDE = 'L' SIDE = 'R'
TRANS = 'N': Q * C C * Q
TRANS = 'C': Q**H * C C * Q**H
where Q is a complex unitary matrix defined as the product of k
elementary reflectors
Q = H(1)**H H(2)**H . . . H(k)**H
as returned by CGERQF. Q is of order M if SIDE = 'L' and of order N
if SIDE = 'R'.
```

**Parameters:**

*SIDE*

```
SIDE is CHARACTER*1
= 'L': apply Q or Q**H from the Left;
= 'R': apply Q or Q**H from the Right.
```

*TRANS*

```
TRANS is CHARACTER*1
= 'N': No transpose, apply Q;
= 'C': Transpose, apply Q**H.
```

*M*

```
M is INTEGER
The number of rows of the matrix C. M >= 0.
```

*N*

```
N is INTEGER
The number of columns of the matrix C. N >= 0.
```

*K*

```
K is INTEGER
The number of elementary reflectors whose product defines
the matrix Q.
If SIDE = 'L', M >= K >= 0;
if SIDE = 'R', N >= K >= 0.
```

*A*

```
A is COMPLEX array, dimension
(LDA,M) if SIDE = 'L',
(LDA,N) if SIDE = 'R'
The i-th row must contain the vector which defines the
elementary reflector H(i), for i = 1,2,...,k, as returned by
CGERQF in the last k rows of its array argument A.
```

*LDA*

```
LDA is INTEGER
The leading dimension of the array A. LDA >= max(1,K).
```

*TAU*

```
TAU is COMPLEX array, dimension (K)
TAU(i) must contain the scalar factor of the elementary
reflector H(i), as returned by CGERQF.
```

*C*

```
C is COMPLEX array, dimension (LDC,N)
On entry, the M-by-N matrix C.
On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.
```

*LDC*

```
LDC is INTEGER
The leading dimension of the array C. LDC >= max(1,M).
```

*WORK*

```
WORK is COMPLEX array, dimension (MAX(1,LWORK))
On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
```

*LWORK*

```
LWORK is INTEGER
The dimension of the array WORK.
If SIDE = 'L', LWORK >= max(1,N);
if SIDE = 'R', LWORK >= max(1,M).
For optimum performance LWORK >= N*NB if SIDE = 'L', and
LWORK >= M*NB if SIDE = 'R', where NB is the optimal
blocksize.
If LWORK = -1, then a workspace query is assumed; the routine
only calculates the optimal size of the WORK array, returns
this value as the first entry of the WORK array, and no error
message related to LWORK is issued by XERBLA.
```

*INFO*

```
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
```

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

November 2011

Definition at line 170 of file cunmrq.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

cunmrq(3) is an alias of cunmrq.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK