# cunmlq.f man page

cunmlq.f

## Synopsis

### Functions/Subroutines

subroutine **cunmlq** (SIDE, TRANS, M, **N**, K, A, **LDA**, TAU, C, LDC, WORK, LWORK, INFO)**CUNMLQ**

## Function/Subroutine Documentation

### subroutine cunmlq (character SIDE, character TRANS, integer M, integer N, integer K, complex, dimension( lda, * ) A, integer LDA, complex, dimension( * ) TAU, complex, dimension( ldc, * ) C, integer LDC, complex, dimension( * ) WORK, integer LWORK, integer INFO)

**CUNMLQ**

**Purpose:**

CUNMLQ overwrites the general complex M-by-N matrix C with SIDE = 'L' SIDE = 'R' TRANS = 'N': Q * C C * Q TRANS = 'C': Q**H * C C * Q**H where Q is a complex unitary matrix defined as the product of k elementary reflectors Q = H(k)**H . . . H(2)**H H(1)**H as returned by CGELQF. Q is of order M if SIDE = 'L' and of order N if SIDE = 'R'.

**Parameters:***SIDE*SIDE is CHARACTER*1 = 'L': apply Q or Q**H from the Left; = 'R': apply Q or Q**H from the Right.

*TRANS*TRANS is CHARACTER*1 = 'N': No transpose, apply Q; = 'C': Conjugate transpose, apply Q**H.

*M*M is INTEGER The number of rows of the matrix C. M >= 0.

*N*N is INTEGER The number of columns of the matrix C. N >= 0.

*K*K is INTEGER The number of elementary reflectors whose product defines the matrix Q. If SIDE = 'L', M >= K >= 0; if SIDE = 'R', N >= K >= 0.

*A*A is COMPLEX array, dimension (LDA,M) if SIDE = 'L', (LDA,N) if SIDE = 'R' The i-th row must contain the vector which defines the elementary reflector H(i), for i = 1,2,...,k, as returned by CGELQF in the first k rows of its array argument A.

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,K).

*TAU*TAU is COMPLEX array, dimension (K) TAU(i) must contain the scalar factor of the elementary reflector H(i), as returned by CGELQF.

*C*C is COMPLEX array, dimension (LDC,N) On entry, the M-by-N matrix C. On exit, C is overwritten by Q*C or Q**H*C or C*Q**H or C*Q.

*LDC*LDC is INTEGER The leading dimension of the array C. LDC >= max(1,M).

*WORK*WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*LWORK*LWORK is INTEGER The dimension of the array WORK. If SIDE = 'L', LWORK >= max(1,N); if SIDE = 'R', LWORK >= max(1,M). For good performance, LWORK should generally be larger. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author:**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**December 2016

Definition at line 170 of file cunmlq.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page cunmlq(3) is an alias of cunmlq.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK