ctzrqf.f man page

ctzrqf.f —

Synopsis

Functions/Subroutines

subroutine ctzrqf (M, N, A, LDA, TAU, INFO)
CTZRQF

Function/Subroutine Documentation

subroutine ctzrqf (integerM, integerN, complex, dimension( lda, * )A, integerLDA, complex, dimension( * )TAU, integerINFO)

CTZRQF

Purpose:

This routine is deprecated and has been replaced by routine CTZRZF.

CTZRQF reduces the M-by-N ( M<=N ) complex upper trapezoidal matrix A
to upper triangular form by means of unitary transformations.

The upper trapezoidal matrix A is factored as

   A = ( R  0 ) * Z,

where Z is an N-by-N unitary matrix and R is an M-by-M upper
triangular matrix.

Parameters:

M

M is INTEGER
The number of rows of the matrix A.  M >= 0.

N

N is INTEGER
The number of columns of the matrix A.  N >= M.

A

A is COMPLEX array, dimension (LDA,N)
On entry, the leading M-by-N upper trapezoidal part of the
array A must contain the matrix to be factorized.
On exit, the leading M-by-M upper triangular part of A
contains the upper triangular matrix R, and elements M+1 to
N of the first M rows of A, with the array TAU, represent the
unitary matrix Z as a product of M elementary reflectors.

LDA

LDA is INTEGER
The leading dimension of the array A.  LDA >= max(1,M).

TAU

TAU is COMPLEX array, dimension (M)
The scalar factors of the elementary reflectors.

INFO

INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value

Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Further Details:

The  factorization is obtained by Householder's method.  The kth
transformation matrix, Z( k ), whose conjugate transpose is used to
introduce zeros into the (m - k + 1)th row of A, is given in the form

   Z( k ) = ( I     0   ),
            ( 0  T( k ) )

where

   T( k ) = I - tau*u( k )*u( k )**H,   u( k ) = (   1    ),
                                                 (   0    )
                                                 ( z( k ) )

tau is a scalar and z( k ) is an ( n - m ) element vector.
tau and z( k ) are chosen to annihilate the elements of the kth row
of X.

The scalar tau is returned in the kth element of TAU and the vector
u( k ) in the kth row of A, such that the elements of z( k ) are
in  a( k, m + 1 ), ..., a( k, n ). The elements of R are returned in
the upper triangular part of A.

Z is given by

   Z =  Z( 1 ) * Z( 2 ) * ... * Z( m ).

Definition at line 139 of file ctzrqf.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

ctzrqf(3) is an alias of ctzrqf.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK