# ctrsm.f man page

ctrsm.f —

## Synopsis

### Functions/Subroutines

subroutinectrsm(SIDE, UPLO, TRANSA, DIAG, M, N, ALPHA, A, LDA, B, LDB)CTRSM

## Function/Subroutine Documentation

### subroutine ctrsm (characterSIDE, characterUPLO, characterTRANSA, characterDIAG, integerM, integerN, complexALPHA, complex, dimension(lda,*)A, integerLDA, complex, dimension(ldb,*)B, integerLDB)

**CTRSM Purpose:**

```
CTRSM solves one of the matrix equations
op( A )*X = alpha*B, or X*op( A ) = alpha*B,
where alpha is a scalar, X and B are m by n matrices, A is a unit, or
non-unit, upper or lower triangular matrix and op( A ) is one of
op( A ) = A or op( A ) = A**T or op( A ) = A**H.
The matrix X is overwritten on B.
```

**Parameters:**

*SIDE*

```
SIDE is CHARACTER*1
On entry, SIDE specifies whether op( A ) appears on the left
or right of X as follows:
SIDE = 'L' or 'l' op( A )*X = alpha*B.
SIDE = 'R' or 'r' X*op( A ) = alpha*B.
```

*UPLO*

```
UPLO is CHARACTER*1
On entry, UPLO specifies whether the matrix A is an upper or
lower triangular matrix as follows:
UPLO = 'U' or 'u' A is an upper triangular matrix.
UPLO = 'L' or 'l' A is a lower triangular matrix.
```

*TRANSA*

```
TRANSA is CHARACTER*1
On entry, TRANSA specifies the form of op( A ) to be used in
the matrix multiplication as follows:
TRANSA = 'N' or 'n' op( A ) = A.
TRANSA = 'T' or 't' op( A ) = A**T.
TRANSA = 'C' or 'c' op( A ) = A**H.
```

*DIAG*

```
DIAG is CHARACTER*1
On entry, DIAG specifies whether or not A is unit triangular
as follows:
DIAG = 'U' or 'u' A is assumed to be unit triangular.
DIAG = 'N' or 'n' A is not assumed to be unit
triangular.
```

*M*

```
M is INTEGER
On entry, M specifies the number of rows of B. M must be at
least zero.
```

*N*

```
N is INTEGER
On entry, N specifies the number of columns of B. N must be
at least zero.
```

*ALPHA*

```
ALPHA is COMPLEX
On entry, ALPHA specifies the scalar alpha. When alpha is
zero then A is not referenced and B need not be set before
entry.
```

*A*

```
A is COMPLEX array of DIMENSION ( LDA, k ),
where k is m when SIDE = 'L' or 'l'
and k is n when SIDE = 'R' or 'r'.
Before entry with UPLO = 'U' or 'u', the leading k by k
upper triangular part of the array A must contain the upper
triangular matrix and the strictly lower triangular part of
A is not referenced.
Before entry with UPLO = 'L' or 'l', the leading k by k
lower triangular part of the array A must contain the lower
triangular matrix and the strictly upper triangular part of
A is not referenced.
Note that when DIAG = 'U' or 'u', the diagonal elements of
A are not referenced either, but are assumed to be unity.
```

*LDA*

```
LDA is INTEGER
On entry, LDA specifies the first dimension of A as declared
in the calling (sub) program. When SIDE = 'L' or 'l' then
LDA must be at least max( 1, m ), when SIDE = 'R' or 'r'
then LDA must be at least max( 1, n ).
```

*B*

```
B is COMPLEX array of DIMENSION ( LDB, n ).
Before entry, the leading m by n part of the array B must
contain the right-hand side matrix B, and on exit is
overwritten by the solution matrix X.
```

*LDB*

```
LDB is INTEGER
On entry, LDB specifies the first dimension of B as declared
in the calling (sub) program. LDB must be at least
max( 1, m ).
```

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

November 2011

**Further Details:**

```
Level 3 Blas routine.
-- Written on 8-February-1989.
Jack Dongarra, Argonne National Laboratory.
Iain Duff, AERE Harwell.
Jeremy Du Croz, Numerical Algorithms Group Ltd.
Sven Hammarling, Numerical Algorithms Group Ltd.
```

Definition at line 181 of file ctrsm.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

ctrsm(3) is an alias of ctrsm.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK