cppsv.f man page

cppsv.f —

Synopsis

Functions/Subroutines

subroutine cppsv (UPLO, N, NRHS, AP, B, LDB, INFO)
CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices

Function/Subroutine Documentation

subroutine cppsv (character UPLO, integer N, integer NRHS, complex, dimension( * ) AP, complex, dimension( ldb, * ) B, integer LDB, integer INFO)

CPPSV computes the solution to system of linear equations A * X = B for OTHER matrices  

Purpose:

 CPPSV computes the solution to a complex system of linear equations
    A * X = B,
 where A is an N-by-N Hermitian positive definite matrix stored in
 packed format and X and B are N-by-NRHS matrices.

 The Cholesky decomposition is used to factor A as
    A = U**H * U,  if UPLO = 'U', or
    A = L * L**H,  if UPLO = 'L',
 where U is an upper triangular matrix and L is a lower triangular
 matrix.  The factored form of A is then used to solve the system of
 equations A * X = B.
Parameters:

UPLO

          UPLO is CHARACTER*1
          = 'U':  Upper triangle of A is stored;
          = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
          The number of linear equations, i.e., the order of the
          matrix A.  N >= 0.

NRHS

          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrix B.  NRHS >= 0.

AP

          AP is COMPLEX array, dimension (N*(N+1)/2)
          On entry, the upper or lower triangle of the Hermitian matrix
          A, packed columnwise in a linear array.  The j-th column of A
          is stored in the array AP as follows:
          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
          See below for further details.

          On exit, if INFO = 0, the factor U or L from the Cholesky
          factorization A = U**H*U or A = L*L**H, in the same storage
          format as A.

B

          B is COMPLEX array, dimension (LDB,NRHS)
          On entry, the N-by-NRHS right hand side matrix B.
          On exit, if INFO = 0, the N-by-NRHS solution matrix X.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value
          > 0:  if INFO = i, the leading minor of order i of A is not
                positive definite, so the factorization could not be
                completed, and the solution has not been computed.
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Further Details:

  The packed storage scheme is illustrated by the following example
  when N = 4, UPLO = 'U':

  Two-dimensional storage of the Hermitian matrix A:

     a11 a12 a13 a14
         a22 a23 a24
             a33 a34     (aij = conjg(aji))
                 a44

  Packed storage of the upper triangle of A:

  AP = [ a11, a12, a22, a13, a23, a33, a14, a24, a34, a44 ]

Definition at line 146 of file cppsv.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page cppsv(3) is an alias of cppsv.f(3).

Sat Jun 24 2017 Version 3.7.1 LAPACK