cla_hercond_x.f - Man Page

SRC/cla_hercond_x.f

Synopsis

Functions/Subroutines

real function cla_hercond_x (uplo, n, a, lda, af, ldaf, ipiv, x, info, work, rwork)
CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.

Function/Subroutine Documentation

real function cla_hercond_x (character uplo, integer n, complex, dimension( lda, * ) a, integer lda, complex, dimension( ldaf, * ) af, integer ldaf, integer, dimension( * ) ipiv, complex, dimension( * ) x, integer info, complex, dimension( * ) work, real, dimension( * ) rwork)

CLA_HERCOND_X computes the infinity norm condition number of op(A)*diag(x) for Hermitian indefinite matrices.  

Purpose:

    CLA_HERCOND_X computes the infinity norm condition number of
    op(A) * diag(X) where X is a COMPLEX vector.
Parameters

UPLO

          UPLO is CHARACTER*1
       = 'U':  Upper triangle of A is stored;
       = 'L':  Lower triangle of A is stored.

N

          N is INTEGER
     The number of linear equations, i.e., the order of the
     matrix A.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
     On entry, the N-by-N matrix A.

LDA

          LDA is INTEGER
     The leading dimension of the array A.  LDA >= max(1,N).

AF

          AF is COMPLEX array, dimension (LDAF,N)
     The block diagonal matrix D and the multipliers used to
     obtain the factor U or L as computed by CHETRF.

LDAF

          LDAF is INTEGER
     The leading dimension of the array AF.  LDAF >= max(1,N).

IPIV

          IPIV is INTEGER array, dimension (N)
     Details of the interchanges and the block structure of D
     as determined by CHETRF.

X

          X is COMPLEX array, dimension (N)
     The vector X in the formula op(A) * diag(X).

INFO

          INFO is INTEGER
       = 0:  Successful exit.
     i > 0:  The ith argument is invalid.

WORK

          WORK is COMPLEX array, dimension (2*N).
     Workspace.

RWORK

          RWORK is REAL array, dimension (N).
     Workspace.
Author

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line 129 of file cla_hercond_x.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page cla_hercond_x(3) is an alias of cla_hercond_x.f(3).

Tue Nov 28 2023 12:08:41 Version 3.12.0 LAPACK