# chprfs.f man page

chprfs.f —

## Synopsis

### Functions/Subroutines

subroutinechprfs(UPLO, N, NRHS, AP, AFP, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO)CHPRFS

## Function/Subroutine Documentation

### subroutine chprfs (characterUPLO, integerN, integerNRHS, complex, dimension( * )AP, complex, dimension( * )AFP, integer, dimension( * )IPIV, complex, dimension( ldb, * )B, integerLDB, complex, dimension( ldx, * )X, integerLDX, real, dimension( * )FERR, real, dimension( * )BERR, complex, dimension( * )WORK, real, dimension( * )RWORK, integerINFO)

**CHPRFS**

**Purpose:**

```
CHPRFS improves the computed solution to a system of linear
equations when the coefficient matrix is Hermitian indefinite
and packed, and provides error bounds and backward error estimates
for the solution.
```

**Parameters:**

*UPLO*

```
UPLO is CHARACTER*1
= 'U': Upper triangle of A is stored;
= 'L': Lower triangle of A is stored.
```

*N*

```
N is INTEGER
The order of the matrix A. N >= 0.
```

*NRHS*

```
NRHS is INTEGER
The number of right hand sides, i.e., the number of columns
of the matrices B and X. NRHS >= 0.
```

*AP*

```
AP is COMPLEX array, dimension (N*(N+1)/2)
The upper or lower triangle of the Hermitian matrix A, packed
columnwise in a linear array. The j-th column of A is stored
in the array AP as follows:
if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
```

*AFP*

```
AFP is COMPLEX array, dimension (N*(N+1)/2)
The factored form of the matrix A. AFP contains the block
diagonal matrix D and the multipliers used to obtain the
factor U or L from the factorization A = U*D*U**H or
A = L*D*L**H as computed by CHPTRF, stored as a packed
triangular matrix.
```

*IPIV*

```
IPIV is INTEGER array, dimension (N)
Details of the interchanges and the block structure of D
as determined by CHPTRF.
```

*B*

```
B is COMPLEX array, dimension (LDB,NRHS)
The right hand side matrix B.
```

*LDB*

```
LDB is INTEGER
The leading dimension of the array B. LDB >= max(1,N).
```

*X*

```
X is COMPLEX array, dimension (LDX,NRHS)
On entry, the solution matrix X, as computed by CHPTRS.
On exit, the improved solution matrix X.
```

*LDX*

```
LDX is INTEGER
The leading dimension of the array X. LDX >= max(1,N).
```

*FERR*

```
FERR is REAL array, dimension (NRHS)
The estimated forward error bound for each solution vector
X(j) (the j-th column of the solution matrix X).
If XTRUE is the true solution corresponding to X(j), FERR(j)
is an estimated upper bound for the magnitude of the largest
element in (X(j) - XTRUE) divided by the magnitude of the
largest element in X(j). The estimate is as reliable as
the estimate for RCOND, and is almost always a slight
overestimate of the true error.
```

*BERR*

```
BERR is REAL array, dimension (NRHS)
The componentwise relative backward error of each solution
vector X(j) (i.e., the smallest relative change in
any element of A or B that makes X(j) an exact solution).
```

*WORK*

`WORK is COMPLEX array, dimension (2*N)`

*RWORK*

`RWORK is REAL array, dimension (N)`

*INFO*

```
INFO is INTEGER
= 0: successful exit
< 0: if INFO = -i, the i-th argument had an illegal value
```

**Internal Parameters:**

`ITMAX is the maximum number of steps of iterative refinement.`

**Author:**

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**

November 2011

Definition at line 180 of file chprfs.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

chprfs(3) is an alias of chprfs.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK