# chetrd_2stage.f man page

chetrd_2stage.f

## Synopsis

### Functions/Subroutines

subroutine **chetrd_2stage** (VECT, UPLO, **N**, A, **LDA**, D, E, TAU, HOUS2, LHOUS2, WORK, LWORK, INFO)**CHETRD_2STAGE**

## Function/Subroutine Documentation

### subroutine chetrd_2stage (character VECT, character UPLO, integer N, complex, dimension( lda, * ) A, integer LDA, real, dimension( * ) D, real, dimension( * ) E, complex, dimension( * ) TAU, complex, dimension( * ) HOUS2, integer LHOUS2, complex, dimension( * ) WORK, integer LWORK, integer INFO)

**CHETRD_2STAGE**

**Purpose:**

CHETRD_2STAGE reduces a complex Hermitian matrix A to real symmetric tridiagonal form T by a unitary similarity transformation: Q1**H Q2**H* A * Q2 * Q1 = T.

**Parameters:**-
*VECT*VECT is CHARACTER*1 = 'N': No need for the Housholder representation, in particular for the second stage (Band to tridiagonal) and thus LHOUS2 is of size max(1, 4*N); = 'V': the Householder representation is needed to either generate Q1 Q2 or to apply Q1 Q2, then LHOUS2 is to be queried and computed. (NOT AVAILABLE IN THIS RELEASE).

*UPLO*UPLO is CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored.

*N*N is INTEGER The order of the matrix A. N >= 0.

*A*A is COMPLEX array, dimension (LDA,N) On entry, the Hermitian matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. On exit, if UPLO = 'U', the band superdiagonal of A are overwritten by the corresponding elements of the internal band-diagonal matrix AB, and the elements above the KD superdiagonal, with the array TAU, represent the unitary matrix Q1 as a product of elementary reflectors; if UPLO = 'L', the diagonal and band subdiagonal of A are over- written by the corresponding elements of the internal band-diagonal matrix AB, and the elements below the KD subdiagonal, with the array TAU, represent the unitary matrix Q1 as a product of elementary reflectors. See Further Details.

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,N).

*D*D is REAL array, dimension (N) The diagonal elements of the tridiagonal matrix T.

*E*E is REAL array, dimension (N-1) The off-diagonal elements of the tridiagonal matrix T.

*TAU*TAU is COMPLEX array, dimension (N-KD) The scalar factors of the elementary reflectors of the first stage (see Further Details).

*HOUS2*HOUS2 is COMPLEX array, dimension LHOUS2, that store the Householder representation of the stage2 band to tridiagonal.

*LHOUS2*LHOUS2 is INTEGER The dimension of the array HOUS2. LHOUS2 = MAX(1, dimension) If LWORK = -1, or LHOUS2=-1, then a query is assumed; the routine only calculates the optimal size of the HOUS2 array, returns this value as the first entry of the HOUS2 array, and no error message related to LHOUS2 is issued by XERBLA. LHOUS2 = MAX(1, dimension) where dimension = 4*N if VECT='N' not available now if VECT='H'

*WORK*WORK is COMPLEX array, dimension (LWORK)

*LWORK*LWORK is INTEGER The dimension of the array WORK. LWORK = MAX(1, dimension) If LWORK = -1, or LHOUS2=-1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA. LWORK = MAX(1, dimension) where dimension = max(stage1,stage2) + (KD+1)*N = N*KD + N*max(KD+1,FACTOPTNB) + max(2*KD*KD, KD*NTHREADS) + (KD+1)*N where KD is the blocking size of the reduction, FACTOPTNB is the blocking used by the QR or LQ algorithm, usually FACTOPTNB=128 is a good choice NTHREADS is the number of threads used when openMP compilation is enabled, otherwise =1.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Author:**-
Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**November 2017

**Further Details:**

Implemented by Azzam Haidar. All details are available on technical report, SC11, SC13 papers. Azzam Haidar, Hatem Ltaief, and Jack Dongarra. Parallel reduction to condensed forms for symmetric eigenvalue problems using aggregated fine-grained and memory-aware kernels. In Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '11), New York, NY, USA, Article 8 , 11 pages. http://doi.acm.org/10.1145/2063384.2063394 A. Haidar, J. Kurzak, P. Luszczek, 2013. An improved parallel singular value algorithm and its implementation for multicore hardware, In Proceedings of 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC '13). Denver, Colorado, USA, 2013. Article 90, 12 pages. http://doi.acm.org/10.1145/2503210.2503292 A. Haidar, R. Solca, S. Tomov, T. Schulthess and J. Dongarra. A novel hybrid CPU-GPU generalized eigensolver for electronic structure calculations based on fine-grained memory aware tasks. International Journal of High Performance Computing Applications. Volume 28 Issue 2, Pages 196-209, May 2014. http://hpc.sagepub.com/content/28/2/196

Definition at line 227 of file chetrd_2stage.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page chetrd_2stage(3) is an alias of chetrd_2stage.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK