# chemm.f man page

chemm.f

## Synopsis

### Functions/Subroutines

subroutine **chemm** (SIDE, UPLO, M, **N**, ALPHA, A, **LDA**, B, **LDB**, BETA, C, LDC)**CHEMM**

## Function/Subroutine Documentation

### subroutine chemm (character SIDE, character UPLO, integer M, integer N, complex ALPHA, complex, dimension(lda,*) A, integer LDA, complex, dimension(ldb,*) B, integer LDB, complex BETA, complex, dimension(ldc,*) C, integer LDC)

**CHEMM**

**Purpose:**

CHEMM performs one of the matrix-matrix operations C := alpha*A*B + beta*C, or C := alpha*B*A + beta*C, where alpha and beta are scalars, A is an hermitian matrix and B and C are m by n matrices.

**Parameters:***SIDE*SIDE is CHARACTER*1 On entry, SIDE specifies whether the hermitian matrix A appears on the left or right in the operation as follows: SIDE = 'L' or 'l' C := alpha*A*B + beta*C, SIDE = 'R' or 'r' C := alpha*B*A + beta*C,

*UPLO*UPLO is CHARACTER*1 On entry, UPLO specifies whether the upper or lower triangular part of the hermitian matrix A is to be referenced as follows: UPLO = 'U' or 'u' Only the upper triangular part of the hermitian matrix is to be referenced. UPLO = 'L' or 'l' Only the lower triangular part of the hermitian matrix is to be referenced.

*M*M is INTEGER On entry, M specifies the number of rows of the matrix C. M must be at least zero.

*N*N is INTEGER On entry, N specifies the number of columns of the matrix C. N must be at least zero.

*ALPHA*ALPHA is COMPLEX On entry, ALPHA specifies the scalar alpha.

*A*A is COMPLEX array, dimension ( LDA, ka ), where ka is m when SIDE = 'L' or 'l' and is n otherwise. Before entry with SIDE = 'L' or 'l', the m by m part of the array A must contain the hermitian matrix, such that when UPLO = 'U' or 'u', the leading m by m upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading m by m lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. Before entry with SIDE = 'R' or 'r', the n by n part of the array A must contain the hermitian matrix, such that when UPLO = 'U' or 'u', the leading n by n upper triangular part of the array A must contain the upper triangular part of the hermitian matrix and the strictly lower triangular part of A is not referenced, and when UPLO = 'L' or 'l', the leading n by n lower triangular part of the array A must contain the lower triangular part of the hermitian matrix and the strictly upper triangular part of A is not referenced. Note that the imaginary parts of the diagonal elements need not be set, they are assumed to be zero.

*LDA*LDA is INTEGER On entry, LDA specifies the first dimension of A as declared in the calling (sub) program. When SIDE = 'L' or 'l' then LDA must be at least max( 1, m ), otherwise LDA must be at least max( 1, n ).

*B*B is COMPLEX array, dimension ( LDB, N ) Before entry, the leading m by n part of the array B must contain the matrix B.

*LDB*LDB is INTEGER On entry, LDB specifies the first dimension of B as declared in the calling (sub) program. LDB must be at least max( 1, m ).

*BETA*BETA is COMPLEX On entry, BETA specifies the scalar beta. When BETA is supplied as zero then C need not be set on input.

*C*C is COMPLEX array, dimension ( LDC, N ) Before entry, the leading m by n part of the array C must contain the matrix C, except when beta is zero, in which case C need not be set on entry. On exit, the array C is overwritten by the m by n updated matrix.

*LDC*LDC is INTEGER On entry, LDC specifies the first dimension of C as declared in the calling (sub) program. LDC must be at least max( 1, m ).

**Author:**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**December 2016

**Further Details:**

Level 3 Blas routine. -- Written on 8-February-1989. Jack Dongarra, Argonne National Laboratory. Iain Duff, AERE Harwell. Jeremy Du Croz, Numerical Algorithms Group Ltd. Sven Hammarling, Numerical Algorithms Group Ltd.

Definition at line 193 of file chemm.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page chemm(3) is an alias of chemm.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK