cggsvp.f man page

cggsvp.f —

Synopsis

Functions/Subroutines

subroutine cggsvp (JOBU, JOBV, JOBQ, M, P, N, A, LDA, B, LDB, TOLA, TOLB, K, L, U, LDU, V, LDV, Q, LDQ, IWORK, RWORK, TAU, WORK, INFO)
CGGSVP

Function/Subroutine Documentation

subroutine cggsvp (character JOBU, character JOBV, character JOBQ, integer M, integer P, integer N, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldb, * ) B, integer LDB, real TOLA, real TOLB, integer K, integer L, complex, dimension( ldu, * ) U, integer LDU, complex, dimension( ldv, * ) V, integer LDV, complex, dimension( ldq, * ) Q, integer LDQ, integer, dimension( * ) IWORK, real, dimension( * ) RWORK, complex, dimension( * ) TAU, complex, dimension( * ) WORK, integer INFO)

CGGSVP  

Purpose:

 This routine is deprecated and has been replaced by routine CGGSVP3.

 CGGSVP computes unitary matrices U, V and Q such that

                    N-K-L  K    L
  U**H*A*Q =     K ( 0    A12  A13 )  if M-K-L >= 0;
                 L ( 0     0   A23 )
             M-K-L ( 0     0    0  )

                  N-K-L  K    L
         =     K ( 0    A12  A13 )  if M-K-L < 0;
             M-K ( 0     0   A23 )

                  N-K-L  K    L
  V**H*B*Q =   L ( 0     0   B13 )
             P-L ( 0     0    0  )

 where the K-by-K matrix A12 and L-by-L matrix B13 are nonsingular
 upper triangular; A23 is L-by-L upper triangular if M-K-L >= 0,
 otherwise A23 is (M-K)-by-L upper trapezoidal.  K+L = the effective
 numerical rank of the (M+P)-by-N matrix (A**H,B**H)**H.

 This decomposition is the preprocessing step for computing the
 Generalized Singular Value Decomposition (GSVD), see subroutine
 CGGSVD.
Parameters:

JOBU

          JOBU is CHARACTER*1
          = 'U':  Unitary matrix U is computed;
          = 'N':  U is not computed.

JOBV

          JOBV is CHARACTER*1
          = 'V':  Unitary matrix V is computed;
          = 'N':  V is not computed.

JOBQ

          JOBQ is CHARACTER*1
          = 'Q':  Unitary matrix Q is computed;
          = 'N':  Q is not computed.

M

          M is INTEGER
          The number of rows of the matrix A.  M >= 0.

P

          P is INTEGER
          The number of rows of the matrix B.  P >= 0.

N

          N is INTEGER
          The number of columns of the matrices A and B.  N >= 0.

A

          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, A contains the triangular (or trapezoidal) matrix
          described in the Purpose section.

LDA

          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).

B

          B is COMPLEX array, dimension (LDB,N)
          On entry, the P-by-N matrix B.
          On exit, B contains the triangular matrix described in
          the Purpose section.

LDB

          LDB is INTEGER
          The leading dimension of the array B. LDB >= max(1,P).

TOLA

          TOLA is REAL

TOLB

          TOLB is REAL

          TOLA and TOLB are the thresholds to determine the effective
          numerical rank of matrix B and a subblock of A. Generally,
          they are set to
             TOLA = MAX(M,N)*norm(A)*MACHEPS,
             TOLB = MAX(P,N)*norm(B)*MACHEPS.
          The size of TOLA and TOLB may affect the size of backward
          errors of the decomposition.

K

          K is INTEGER

L

          L is INTEGER

          On exit, K and L specify the dimension of the subblocks
          described in Purpose section.
          K + L = effective numerical rank of (A**H,B**H)**H.

U

          U is COMPLEX array, dimension (LDU,M)
          If JOBU = 'U', U contains the unitary matrix U.
          If JOBU = 'N', U is not referenced.

LDU

          LDU is INTEGER
          The leading dimension of the array U. LDU >= max(1,M) if
          JOBU = 'U'; LDU >= 1 otherwise.

V

          V is COMPLEX array, dimension (LDV,P)
          If JOBV = 'V', V contains the unitary matrix V.
          If JOBV = 'N', V is not referenced.

LDV

          LDV is INTEGER
          The leading dimension of the array V. LDV >= max(1,P) if
          JOBV = 'V'; LDV >= 1 otherwise.

Q

          Q is COMPLEX array, dimension (LDQ,N)
          If JOBQ = 'Q', Q contains the unitary matrix Q.
          If JOBQ = 'N', Q is not referenced.

LDQ

          LDQ is INTEGER
          The leading dimension of the array Q. LDQ >= max(1,N) if
          JOBQ = 'Q'; LDQ >= 1 otherwise.

IWORK

          IWORK is INTEGER array, dimension (N)

RWORK

          RWORK is REAL array, dimension (2*N)

TAU

          TAU is COMPLEX array, dimension (N)

WORK

          WORK is COMPLEX array, dimension (max(3*N,M,P))

INFO

          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

December 2016

Further Details:

The subroutine uses LAPACK subroutine CGEQPF for the QR factorization with column pivoting to detect the effective numerical rank of the a matrix. It may be replaced by a better rank determination strategy.

Definition at line 264 of file cggsvp.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

The man page cggsvp(3) is an alias of cggsvp.f(3).

Sat Jun 24 2017 Version 3.7.1 LAPACK