cgghrd.f man page

cgghrd.f —

Synopsis

Functions/Subroutines

subroutine cgghrd (COMPQ, COMPZ, N, ILO, IHI, A, LDA, B, LDB, Q, LDQ, Z, LDZ, INFO)
CGGHRD

Function/Subroutine Documentation

subroutine cgghrd (characterCOMPQ, characterCOMPZ, integerN, integerILO, integerIHI, complex, dimension( lda, * )A, integerLDA, complex, dimension( ldb, * )B, integerLDB, complex, dimension( ldq, * )Q, integerLDQ, complex, dimension( ldz, * )Z, integerLDZ, integerINFO)

CGGHRD  

Purpose:

 CGGHRD reduces a pair of complex matrices (A,B) to generalized upper
 Hessenberg form using unitary transformations, where A is a
 general matrix and B is upper triangular.  The form of the generalized
 eigenvalue problem is
    A*x = lambda*B*x,
 and B is typically made upper triangular by computing its QR
 factorization and moving the unitary matrix Q to the left side
 of the equation.

 This subroutine simultaneously reduces A to a Hessenberg matrix H:
    Q**H*A*Z = H
 and transforms B to another upper triangular matrix T:
    Q**H*B*Z = T
 in order to reduce the problem to its standard form
    H*y = lambda*T*y
 where y = Z**H*x.

 The unitary matrices Q and Z are determined as products of Givens
 rotations.  They may either be formed explicitly, or they may be
 postmultiplied into input matrices Q1 and Z1, so that
      Q1 * A * Z1**H = (Q1*Q) * H * (Z1*Z)**H
      Q1 * B * Z1**H = (Q1*Q) * T * (Z1*Z)**H
 If Q1 is the unitary matrix from the QR factorization of B in the
 original equation A*x = lambda*B*x, then CGGHRD reduces the original
 problem to generalized Hessenberg form.
Parameters:

COMPQ

          COMPQ is CHARACTER*1
          = 'N': do not compute Q;
          = 'I': Q is initialized to the unit matrix, and the
                 unitary matrix Q is returned;
          = 'V': Q must contain a unitary matrix Q1 on entry,
                 and the product Q1*Q is returned.

COMPZ

          COMPZ is CHARACTER*1
          = 'N': do not compute Q;
          = 'I': Q is initialized to the unit matrix, and the
                 unitary matrix Q is returned;
          = 'V': Q must contain a unitary matrix Q1 on entry,
                 and the product Q1*Q is returned.

N

          N is INTEGER
          The order of the matrices A and B.  N >= 0.

ILO

          ILO is INTEGER

IHI

          IHI is INTEGER

          ILO and IHI mark the rows and columns of A which are to be
          reduced.  It is assumed that A is already upper triangular
          in rows and columns 1:ILO-1 and IHI+1:N.  ILO and IHI are
          normally set by a previous call to CGGBAL; otherwise they
          should be set to 1 and N respectively.
          1 <= ILO <= IHI <= N, if N > 0; ILO=1 and IHI=0, if N=0.

A

          A is COMPLEX array, dimension (LDA, N)
          On entry, the N-by-N general matrix to be reduced.
          On exit, the upper triangle and the first subdiagonal of A
          are overwritten with the upper Hessenberg matrix H, and the
          rest is set to zero.

LDA

          LDA is INTEGER
          The leading dimension of the array A.  LDA >= max(1,N).

B

          B is COMPLEX array, dimension (LDB, N)
          On entry, the N-by-N upper triangular matrix B.
          On exit, the upper triangular matrix T = Q**H B Z.  The
          elements below the diagonal are set to zero.

LDB

          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,N).

Q

          Q is COMPLEX array, dimension (LDQ, N)
          On entry, if COMPQ = 'V', the unitary matrix Q1, typically
          from the QR factorization of B.
          On exit, if COMPQ='I', the unitary matrix Q, and if
          COMPQ = 'V', the product Q1*Q.
          Not referenced if COMPQ='N'.

LDQ

          LDQ is INTEGER
          The leading dimension of the array Q.
          LDQ >= N if COMPQ='V' or 'I'; LDQ >= 1 otherwise.

Z

          Z is COMPLEX array, dimension (LDZ, N)
          On entry, if COMPZ = 'V', the unitary matrix Z1.
          On exit, if COMPZ='I', the unitary matrix Z, and if
          COMPZ = 'V', the product Z1*Z.
          Not referenced if COMPZ='N'.

LDZ

          LDZ is INTEGER
          The leading dimension of the array Z.
          LDZ >= N if COMPZ='V' or 'I'; LDZ >= 1 otherwise.

INFO

          INFO is INTEGER
          = 0:  successful exit.
          < 0:  if INFO = -i, the i-th argument had an illegal value.
Author:

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Date:

November 2011

Further Details:

  This routine reduces A to Hessenberg and B to triangular form by
  an unblocked reduction, as described in _Matrix_Computations_,
  by Golub and van Loan (Johns Hopkins Press).

Definition at line 204 of file cgghrd.f.

Author

Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

cgghrd(3) is an alias of cgghrd.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK