cgelss.f man page

cgelss.f —



subroutine cgelss (M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, WORK, LWORK, RWORK, INFO)
CGELSS solves overdetermined or underdetermined systems for GE matrices

Function/Subroutine Documentation

subroutine cgelss (integerM, integerN, integerNRHS, complex, dimension( lda, * )A, integerLDA, complex, dimension( ldb, * )B, integerLDB, real, dimension( * )S, realRCOND, integerRANK, complex, dimension( * )WORK, integerLWORK, real, dimension( * )RWORK, integerINFO)

CGELSS solves overdetermined or underdetermined systems for GE matrices  


 CGELSS computes the minimum norm solution to a complex linear
 least squares problem:

 Minimize 2-norm(| b - A*x |).

 using the singular value decomposition (SVD) of A. A is an M-by-N
 matrix which may be rank-deficient.

 Several right hand side vectors b and solution vectors x can be
 handled in a single call; they are stored as the columns of the
 M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix

 The effective rank of A is determined by treating as zero those
 singular values which are less than RCOND times the largest singular


          M is INTEGER
          The number of rows of the matrix A. M >= 0.


          N is INTEGER
          The number of columns of the matrix A. N >= 0.


          NRHS is INTEGER
          The number of right hand sides, i.e., the number of columns
          of the matrices B and X. NRHS >= 0.


          A is COMPLEX array, dimension (LDA,N)
          On entry, the M-by-N matrix A.
          On exit, the first min(m,n) rows of A are overwritten with
          its right singular vectors, stored rowwise.


          LDA is INTEGER
          The leading dimension of the array A. LDA >= max(1,M).


          B is COMPLEX array, dimension (LDB,NRHS)
          On entry, the M-by-NRHS right hand side matrix B.
          On exit, B is overwritten by the N-by-NRHS solution matrix X.
          If m >= n and RANK = n, the residual sum-of-squares for
          the solution in the i-th column is given by the sum of
          squares of the modulus of elements n+1:m in that column.


          LDB is INTEGER
          The leading dimension of the array B.  LDB >= max(1,M,N).


          S is REAL array, dimension (min(M,N))
          The singular values of A in decreasing order.
          The condition number of A in the 2-norm = S(1)/S(min(m,n)).


          RCOND is REAL
          RCOND is used to determine the effective rank of A.
          Singular values S(i) <= RCOND*S(1) are treated as zero.
          If RCOND < 0, machine precision is used instead.


          RANK is INTEGER
          The effective rank of A, i.e., the number of singular values
          which are greater than RCOND*S(1).


          WORK is COMPLEX array, dimension (MAX(1,LWORK))
          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.


          LWORK is INTEGER
          The dimension of the array WORK. LWORK >= 1, and also:
          LWORK >=  2*min(M,N) + max(M,N,NRHS)
          For good performance, LWORK should generally be larger.

          If LWORK = -1, then a workspace query is assumed; the routine
          only calculates the optimal size of the WORK array, returns
          this value as the first entry of the WORK array, and no error
          message related to LWORK is issued by XERBLA.


          RWORK is REAL array, dimension (5*min(M,N))


          INFO is INTEGER
          = 0:  successful exit
          < 0:  if INFO = -i, the i-th argument had an illegal value.
          > 0:  the algorithm for computing the SVD failed to converge;
                if INFO = i, i off-diagonal elements of an intermediate
                bidiagonal form did not converge to zero.

Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.


November 2011

Definition at line 178 of file cgelss.f.


Generated automatically by Doxygen for LAPACK from the source code.

Referenced By

cgelss(3) is an alias of cgelss.f(3).

Sat Nov 16 2013 Version 3.4.2 LAPACK