# cgels.f man page

cgels.f —

## Synopsis

### Functions/Subroutines

subroutine **cgels** (TRANS, M, **N**, **NRHS**, A, **LDA**, B, **LDB**, WORK, LWORK, INFO)**CGELS solves overdetermined or underdetermined systems for GE matrices**

## Function/Subroutine Documentation

### subroutine cgels (character TRANS, integer M, integer N, integer NRHS, complex, dimension( lda, * ) A, integer LDA, complex, dimension( ldb, * ) B, integer LDB, complex, dimension( * ) WORK, integer LWORK, integer INFO)

**CGELS solves overdetermined or underdetermined systems for GE matrices**

**Purpose:**

CGELS solves overdetermined or underdetermined complex linear systems involving an M-by-N matrix A, or its conjugate-transpose, using a QR or LQ factorization of A. It is assumed that A has full rank. The following options are provided: 1. If TRANS = 'N' and m >= n: find the least squares solution of an overdetermined system, i.e., solve the least squares problem minimize || B - A*X ||. 2. If TRANS = 'N' and m < n: find the minimum norm solution of an underdetermined system A * X = B. 3. If TRANS = 'C' and m >= n: find the minimum norm solution of an underdetermined system A**H * X = B. 4. If TRANS = 'C' and m < n: find the least squares solution of an overdetermined system, i.e., solve the least squares problem minimize || B - A**H * X ||. Several right hand side vectors b and solution vectors x can be handled in a single call; they are stored as the columns of the M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix X.

**Parameters:**-
*TRANS*TRANS is CHARACTER*1 = 'N': the linear system involves A; = 'C': the linear system involves A**H.

*M*M is INTEGER The number of rows of the matrix A. M >= 0.

*N*N is INTEGER The number of columns of the matrix A. N >= 0.

*NRHS*NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.

*A*A is COMPLEX array, dimension (LDA,N) On entry, the M-by-N matrix A. if M >= N, A is overwritten by details of its QR factorization as returned by CGEQRF; if M < N, A is overwritten by details of its LQ factorization as returned by CGELQF.

*LDA*LDA is INTEGER The leading dimension of the array A. LDA >= max(1,M).

*B*B is COMPLEX array, dimension (LDB,NRHS) On entry, the matrix B of right hand side vectors, stored columnwise; B is M-by-NRHS if TRANS = 'N', or N-by-NRHS if TRANS = 'C'. On exit, if INFO = 0, B is overwritten by the solution vectors, stored columnwise: if TRANS = 'N' and m >= n, rows 1 to n of B contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of the modulus of elements N+1 to M in that column; if TRANS = 'N' and m < n, rows 1 to N of B contain the minimum norm solution vectors; if TRANS = 'C' and m >= n, rows 1 to M of B contain the minimum norm solution vectors; if TRANS = 'C' and m < n, rows 1 to M of B contain the least squares solution vectors; the residual sum of squares for the solution in each column is given by the sum of squares of the modulus of elements M+1 to N in that column.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= MAX(1,M,N).

*WORK*WORK is COMPLEX array, dimension (MAX(1,LWORK)) On exit, if INFO = 0, WORK(1) returns the optimal LWORK.

*LWORK*LWORK is INTEGER The dimension of the array WORK. LWORK >= max( 1, MN + max( MN, NRHS ) ). For optimal performance, LWORK >= max( 1, MN + max( MN, NRHS )*NB ). where MN = min(M,N) and NB is the optimum block size. If LWORK = -1, then a workspace query is assumed; the routine only calculates the optimal size of the WORK array, returns this value as the first entry of the WORK array, and no error message related to LWORK is issued by XERBLA.

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, the i-th diagonal element of the triangular factor of A is zero, so that A does not have full rank; the least squares solution could not be computed.

**Author:**-
Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**December 2016

Definition at line 184 of file cgels.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page cgels(3) is an alias of cgels.f(3).

Sat Jun 24 2017 Version 3.7.1 LAPACK