# cgbtf2.f man page

cgbtf2.f

## Synopsis

### Functions/Subroutines

subroutine **cgbtf2** (M, **N**, KL, KU, AB, LDAB, IPIV, INFO)**CGBTF2** computes the LU factorization of a general band matrix using the unblocked version of the algorithm.

## Function/Subroutine Documentation

### subroutine cgbtf2 (integer M, integer N, integer KL, integer KU, complex, dimension( ldab, * ) AB, integer LDAB, integer, dimension( * ) IPIV, integer INFO)

**CGBTF2** computes the LU factorization of a general band matrix using the unblocked version of the algorithm.

**Purpose:**

CGBTF2 computes an LU factorization of a complex m-by-n band matrix A using partial pivoting with row interchanges. This is the unblocked version of the algorithm, calling Level 2 BLAS.

**Parameters:**-
*M*M is INTEGER The number of rows of the matrix A. M >= 0.

*N*N is INTEGER The number of columns of the matrix A. N >= 0.

*KL*KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.

*KU*KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.

*AB*AB is COMPLEX array, dimension (LDAB,N) On entry, the matrix A in band storage, in rows KL+1 to 2*KL+KU+1; rows 1 to KL of the array need not be set. The j-th column of A is stored in the j-th column of the array AB as follows: AB(kl+ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(m,j+kl) On exit, details of the factorization: U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1. See below for further details.

*LDAB*LDAB is INTEGER The leading dimension of the array AB. LDAB >= 2*KL+KU+1.

*IPIV*IPIV is INTEGER array, dimension (min(M,N)) The pivot indices; for 1 <= i <= min(M,N), row i of the matrix was interchanged with row IPIV(i).

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = +i, U(i,i) is exactly zero. The factorization has been completed, but the factor U is exactly singular, and division by zero will occur if it is used to solve a system of equations.

**Author:**-
Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

**Date:**December 2016

**Further Details:**

The band storage scheme is illustrated by the following example, when M = N = 6, KL = 2, KU = 1: On entry: On exit: * * * + + + * * * u14 u25 u36 * * + + + + * * u13 u24 u35 u46 * a12 a23 a34 a45 a56 * u12 u23 u34 u45 u56 a11 a22 a33 a44 a55 a66 u11 u22 u33 u44 u55 u66 a21 a32 a43 a54 a65 * m21 m32 m43 m54 m65 * a31 a42 a53 a64 * * m31 m42 m53 m64 * * Array elements marked * are not used by the routine; elements marked + need not be set on entry, but are required by the routine to store elements of U, because of fill-in resulting from the row interchanges.

Definition at line 147 of file cgbtf2.f.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page cgbtf2(3) is an alias of cgbtf2.f(3).

Tue Nov 14 2017 Version 3.8.0 LAPACK