# cgbrfs.f - Man Page

SRC/cgbrfs.f

## Synopsis

### Functions/Subroutines

subroutine **cgbrfs** (trans, n, kl, ku, nrhs, ab, ldab, afb, ldafb, ipiv, b, ldb, x, ldx, ferr, berr, work, rwork, info)**CGBRFS**

## Function/Subroutine Documentation

### subroutine cgbrfs (character trans, integer n, integer kl, integer ku, integer nrhs, complex, dimension( ldab, * ) ab, integer ldab, complex, dimension( ldafb, * ) afb, integer ldafb, integer, dimension( * ) ipiv, complex, dimension( ldb, * ) b, integer ldb, complex, dimension( ldx, * ) x, integer ldx, real, dimension( * ) ferr, real, dimension( * ) berr, complex, dimension( * ) work, real, dimension( * ) rwork, integer info)

**CGBRFS**

**Purpose:**

CGBRFS improves the computed solution to a system of linear equations when the coefficient matrix is banded, and provides error bounds and backward error estimates for the solution.

**Parameters***TRANS*TRANS is CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose)

*N*N is INTEGER The order of the matrix A. N >= 0.

*KL*KL is INTEGER The number of subdiagonals within the band of A. KL >= 0.

*KU*KU is INTEGER The number of superdiagonals within the band of A. KU >= 0.

*NRHS*NRHS is INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0.

*AB*AB is COMPLEX array, dimension (LDAB,N) The original band matrix A, stored in rows 1 to KL+KU+1. The j-th column of A is stored in the j-th column of the array AB as follows: AB(ku+1+i-j,j) = A(i,j) for max(1,j-ku)<=i<=min(n,j+kl).

*LDAB*LDAB is INTEGER The leading dimension of the array AB. LDAB >= KL+KU+1.

*AFB*AFB is COMPLEX array, dimension (LDAFB,N) Details of the LU factorization of the band matrix A, as computed by CGBTRF. U is stored as an upper triangular band matrix with KL+KU superdiagonals in rows 1 to KL+KU+1, and the multipliers used during the factorization are stored in rows KL+KU+2 to 2*KL+KU+1.

*LDAFB*LDAFB is INTEGER The leading dimension of the array AFB. LDAFB >= 2*KL*KU+1.

*IPIV*IPIV is INTEGER array, dimension (N) The pivot indices from CGBTRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i).

*B*B is COMPLEX array, dimension (LDB,NRHS) The right hand side matrix B.

*LDB*LDB is INTEGER The leading dimension of the array B. LDB >= max(1,N).

*X*X is COMPLEX array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by CGBTRS. On exit, the improved solution matrix X.

*LDX*LDX is INTEGER The leading dimension of the array X. LDX >= max(1,N).

*FERR*FERR is REAL array, dimension (NRHS) The estimated forward error bound for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution corresponding to X(j), FERR(j) is an estimated upper bound for the magnitude of the largest element in (X(j) - XTRUE) divided by the magnitude of the largest element in X(j). The estimate is as reliable as the estimate for RCOND, and is almost always a slight overestimate of the true error.

*BERR*BERR is REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any element of A or B that makes X(j) an exact solution).

*WORK*WORK is COMPLEX array, dimension (2*N)

*RWORK*RWORK is REAL array, dimension (N)

*INFO*INFO is INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value

**Internal Parameters:**

ITMAX is the maximum number of steps of iterative refinement.

**Author**Univ. of Tennessee

Univ. of California Berkeley

Univ. of Colorado Denver

NAG Ltd.

Definition at line **203** of file **cgbrfs.f**.

## Author

Generated automatically by Doxygen for LAPACK from the source code.

## Referenced By

The man page cgbrfs(3) is an alias of cgbrfs.f(3).

Tue Nov 28 2023 12:08:41 Version 3.12.0 LAPACK