virt-install man page

virt-install — provision new virtual machines


virt-install [OPTION]...


virt-install is a command line tool for creating new KVM, Xen, or Linux container guests using the "libvirt" hypervisor management library. See the Examples section at the end of this document to quickly get started.

virt-install tool supports graphical installations using (for example) VNC or SPICE, as well as text mode installs over serial console. The guest can be configured to use one or more virtual disks, network interfaces, audio devices, physical USB or PCI devices, among others.

The installation media can be held locally or remotely on NFS, HTTP, FTP servers. In the latter case "virt-install" will fetch the minimal files necessary to kick off the installation process, allowing the guest to fetch the rest of the OS distribution as needed. PXE booting, and importing an existing disk image (thus skipping the install phase) are also supported.

Given suitable command line arguments, "virt-install" is capable of running completely unattended, with the guest 'kickstarting' itself too. This allows for easy automation of guest installs.

Many arguments have sub options, specified like opt1=foo,opt2=bar, etc. Try --option=? to see a complete list of sub options associated with that argument, example: virt-install --disk=?

Most options are not required. Minimum requirements are --name, --memory, guest storage (--disk or --filesystem), and an install option.

Connecting to Libvirt

-c URI
--connect URI

Connect to a non-default hypervisor. If this isn't specified, libvirt will try and choose the most suitable default.

Some valid options here are:


For creating KVM and QEMU guests to be run by the system libvirtd instance. This is the default mode that virt-manager uses, and what most KVM users want.


For creating KVM and QEMU guests for libvirtd running as the regular user.


For connecting to Xen.


For creating linux containers

General Options

General configuration parameters that apply to all types of guest installs.

--name NAME

Name of the new guest virtual machine instance. This must be unique amongst all guests known to the hypervisor on the connection, including those not currently active. To re-define an existing guest, use the virsh(1) tool to shut it down ('virsh shutdown') & delete ('virsh undefine') it prior to running "virt-install".

--memory OPTIONS

Memory to allocate for the guest, in MiB. Sub options are available, like 'maxmemory' and 'hugepages'. This deprecates the -r/--ram option.

Use --memory=? to see a list of all available sub options. Complete details at <>

--memorybacking OPTIONS

This option will influence how virtual memory pages are backed by host pages.

Use --memorybacking=? to see a list of all available sub options. Complete details at <>

--arch ARCH

Request a non-native CPU architecture for the guest virtual machine. If omitted, the host CPU architecture will be used in the guest.

--machine MACHINE

The machine type to emulate. This will typically not need to be specified for Xen or KVM, but is useful for choosing machine types of more exotic architectures.

--metadata OPT=VAL,[...]

Specify metadata values for the guest. Possible options include name, uuid, title, and description. This option deprecates -u/--uuid and --description.

Use --metadata=? to see a list of all available sub options. Complete details at <>

--events OPT=VAL,[...]

Specify events values for the guest. Possible options include on_poweroff, on_reboot, and on_crash.

Use --events=? to see a list of all available sub options. Complete details at <>

--resource OPT=VAL,[...]

Specify resource partitioning for the guest.

Use --resource=? to see a list of all available sub options. Complete details at <>

--vcpus OPTIONS

Number of virtual cpus to configure for the guest. If 'maxvcpus' is specified, the guest will be able to hotplug up to MAX vcpus while the guest is running, but will startup with VCPUS.

CPU topology can additionally be specified with sockets, cores, and threads. If values are omitted, the rest will be autofilled preferring sockets over cores over threads.

'cpuset' sets which physical cpus the guest can use. "CPUSET" is a comma separated list of numbers, which can also be specified in ranges or cpus to exclude. Example:

    0,2,3,5     : Use processors 0,2,3 and 5
    1-5,^3,8    : Use processors 1,2,4,5 and 8

If the value 'auto' is passed, virt-install attempts to automatically determine an optimal cpu pinning using NUMA data, if available.

Use --vcpus=? to see a list of all available sub options. Complete details at <>

--numatune OPTIONS

Tune NUMA policy for the domain process. Example invocations

    --numatune 1,2,3,4-7
    --numatune 1-3,5,mode=preferred

Specifies the numa nodes to allocate memory from. This has the same syntax as "--cpuset" option. mode can be one of 'interleave', 'preferred', or 'strict' (the default). See 'man 8 numactl' for information about each mode.

Use --numatune=? to see a list of all available sub options. Complete details at <>

--memtune OPTIONS

Tune memory policy for the domain process. Example invocations

    --memtune 1000
    --memtune hard_limit=100,soft_limit=60,swap_hard_limit=150,min_guarantee=80

Use --memtune=? to see a list of all available sub options. Complete details at <>

--blkiotune OPTIONS

Tune blkio policy for the domain process. Example invocations

    --blkiotune 100
    --blkiotune weight=100,device_path=/dev/sdc,device_weight=200

Use --blkiotune=? to see a list of all available sub options. Complete details at <>

--cpu MODEL[,+feature][,-feature][,match=MATCH][,vendor=VENDOR]

Configure the CPU model and CPU features exposed to the guest. The only required value is MODEL, which is a valid CPU model as known to libvirt.

Libvirt's feature policy values force, require, optional, disable, or forbid, or with the shorthand '+feature' and '-feature', which equal 'force=feature' and 'disable=feature' respectively

Some examples:

--cpu core2duo,+x2apic,disable=vmx

Expose the core2duo CPU model, force enable x2apic, but do not expose vmx

--cpu host

Expose the host CPUs configuration to the guest. This enables the guest to take advantage of many of the host CPUs features (better performance), but may cause issues if migrating the guest to a host without an identical CPU.

--cpu host-model-only

Expose the nearest host CPU model configuration to the guest. It is the best CPU which can be used for a guest on any of the hosts.

Use --cpu=? to see a list of all available sub options. Complete details at <>

--security type=TYPE[,label=LABEL][,relabel=yes|no]

Configure domain security driver settings. Type can be either 'static' or 'dynamic'. 'static' configuration requires a security LABEL. Specifying LABEL without TYPE implies static configuration.

To have libvirt automatically apply your static label, you must specify relabel=yes. Otherwise disk images must be manually labeled by the admin, including images that virt-install is asked to create.

Use --security=? to see a list of all available sub options. Complete details at <>

--features FEAT=on|off,...

Set elements in the guests <features> XML on or off. Examples include acpi, apic, eoi, privnet, and hyperv features. Some examples:

--features eoi=on


--features hyperv_vapic=on,hyperv_spinlocks=off

Enable hypver VAPIC, but disable spinlocks

--features kvm_hidden=on

Allow the KVM hypervisor signature to be hidden from the guest

--features pvspinlock=on

Notify the guest that the host supports paravirtual spinlocks for example by exposing the pvticketlocks mechanism.

--features gic_version=2

This is relevant only for ARM architectures. Possible values are "host" or version number.

Use --features=? to see a list of all available sub options. Complete details at <>

--clock offset=OFFSET,TIMER_OPT=VAL,...

Configure the guest's <clock> XML. Some supported options:

--clock offset=OFFSET

Set the clock offset, ex. 'utc' or 'localtime'

--clock TIMER_present=no

Disable a boolean timer. TIMER here might be hpet, kvmclock, etc.

--clock TIMER_tickpolicy=VAL

Set a timer's tickpolicy value. TIMER here might be rtc, pit, etc. VAL might be catchup, delay, etc. Refer to the libvirt docs for all values.

Use --clock=? to see a list of all available sub options. Complete details at <>


Configure guest power management features. Example suboptions include suspend_to_mem=on|off and suspend_to_disk=on|off

Use --pm=? to see a list of all available sub options. Complete details at <>

Installation Options

--cdrom OPTIONS

File or device used as a virtual CD-ROM device. It can be path to an ISO image, or to a CDROM device. It can also be a URL from which to fetch/access a minimal boot ISO image. The URLs take the same format as described for the "--location" argument. If a cdrom has been specified via the "--disk" option, and neither "--cdrom" nor any other install option is specified, the "--disk" cdrom is used as the install media.

--location OPTIONS

Distribution tree installation source. virt-install can recognize certain distribution trees and fetches a bootable kernel/initrd pair to launch the install.

With libvirt 0.9.4 or later, network URL installs work for remote connections. virt-install will download kernel/initrd to the local machine, and then upload the media to the remote host. This option requires the URL to be accessible by both the local and remote host.

--location allows things like --extra-args for kernel arguments, and using --initrd-inject. If you want to use those options with CDROM media, you have a few options:

* Run virt-install as root and do --location ISO

* Mount the ISO at a local directory, and do --location DIRECTORY

* Mount the ISO at a local directory, export that directory over local http, and do --location http://localhost/DIRECTORY

The "LOCATION" can take one of the following forms:


An HTTP server location containing an installable distribution image.


An FTP server location containing an installable distribution image.

nfs:host:/path or nfs://host/path

An NFS server location containing an installable distribution image. This requires running virt-install as root.


Path to a local directory containing an installable distribution image. Note that the directory will not be accessible by the guest after initial boot, so the OS installer will need another way to access the rest of the install media.


Mount the ISO and probe the directory. This requires running virt-install as root, and has the same VM access caveat as DIRECTORY.


Use the PXE boot protocol to load the initial ramdisk and kernel for starting the guest installation process.


Skip the OS installation process, and build a guest around an existing disk image. The device used for booting is the first device specified via "--disk" or "--filesystem".


Specify that the installation media is a live CD and thus the guest needs to be configured to boot off the CDROM device permanently. It may be desirable to also use the "--disk none" flag in combination.

--extra-args OPTIONS

Additional kernel command line arguments to pass to the installer when performing a guest install from "--location". One common usage is specifying an anaconda kickstart file for automated installs, such as --extra-args "ks=http://myserver/my.ks"

--initrd-inject PATH

Add PATH to the root of the initrd fetched with "--location". This can be used to run an automated install without requiring a network hosted kickstart file:

--initrd-inject=/path/to/my.ks --extra-args "ks=file:/my.ks"

--os-variant OS_VARIANT

Optimize the guest configuration for a specific operating system (ex. 'fedora18', 'rhel7', 'winxp'). While not required, specifying this options is HIGHLY RECOMMENDED, as it can greatly increase performance by specifying virtio among other guest tweaks.

By default, virt-install will attempt to auto detect this value from the install media (currently only supported for URL installs). Autodetection can be disabled with the special value 'none'. Autodetection can be forced with the special value 'auto'.

Use the command "osinfo-query os" to get the list of the accepted OS variants.


Optionally specify the post-install VM boot configuration. This option allows specifying a boot device order, permanently booting off kernel/initrd with option kernel arguments, and enabling a BIOS boot menu (requires libvirt 0.8.3 or later)

--boot can be specified in addition to other install options (such as --location, --cdrom, etc.) or can be specified on its own. In the latter case, behavior is similar to the --import install option: there is no 'install' phase, the guest is just created and launched as specified.

Some examples:

--boot cdrom,fd,hd,network,menu=on

Set the boot device priority as first cdrom, first floppy, first harddisk, network PXE boot. Additionally enable BIOS boot menu prompt.

--boot kernel=KERNEL,initrd=INITRD,kernel_args="console=/dev/ttyS0"

Have guest permanently boot off a local kernel/initrd pair, with the specified kernel options.

--boot kernel=KERNEL,initrd=INITRD,dtb=DTB

Have guest permanently boot off a local kernel/initrd pair with an external device tree binary. DTB can be required for some non-x86 configurations like ARM or PPC

--boot loader=BIOSPATH

Use BIOSPATH as the virtual machine BIOS.

--boot menu=on,useserial=on

Enable the bios boot menu, and enable sending bios text output over serial console.

--boot init=INITPATH

Path to a binary that the container guest will init. If a root "--filesystem" has been specified, virt-install will default to /sbin/init, otherwise will default to /bin/sh.

--boot uefi

Configure the VM to boot from UEFI. In order for virt-install to know the correct UEFI parameters, libvirt needs to be advertising known UEFI binaries via domcapabilities XML, so this will likely only work if using properly configured distro packages.

--boot loader=/.../OVMF_CODE.fd,loader_ro=yes,loader_type=pflash,nvram_template=/.../OVMF_VARS.fd

Specify that the virtual machine use the custom OVMF binary as boot firmware, mapped as a virtual flash chip. In addition, request that libvirt instantiate the VM-specific UEFI varstore from the custom "/.../OVMF_VARS.fd" varstore template. This is the recommended UEFI setup, and should be used if --boot uefi doesn't know about your UEFI binaries.

Use --boot=? to see a list of all available sub options. Complete details at <>

--idmap OPTIONS

If the guest configuration declares a UID or GID mapping, the 'user' namespace will be enabled to apply these. A suitably configured UID/GID mapping is a pre-requisite to make containers secure, in the absence of sVirt confinement.

--idmap can be specified to enable user namespace for LXC containers

   --idmap uid_start=0,uid_target=1000,uid_count=10,gid_start=0,gid_target=1000,gid_count=10

Use --idmap=? to see a list of all available sub options. Complete details at <>

Storage Options

--disk OPTIONS

Specifies media to use as storage for the guest, with various options. The general format of a disk string is

    --disk opt1=val1,opt2=val2,...

The simplest invocation to create a new 10G disk image and associated disk device:

    --disk size=10

virt-install will generate a path name, and place it in the default image location for the hypervisor. To specify media, the command can either be:

    --disk /some/storage/path[,opt1=val1]...

or explicitly specify one of the following arguments:


A path to some storage media to use, existing or not. Existing media can be a file or block device.

Specifying a non-existent path implies attempting to create the new storage, and will require specifying a 'size' value. Even for remote hosts, virt-install will try to use libvirt storage APIs to automatically create the given path.

If the hypervisor supports it, path can also be a network URL, like . For network paths, they hypervisor will directly access the storage, nothing is downloaded locally.


An existing libvirt storage pool name to create new storage on. Requires specifying a 'size' value.


An existing libvirt storage volume to use. This is specified as 'poolname/volname'.

Other available options:


Disk device type. Value can be 'cdrom', 'disk', 'lun' or 'floppy'. Default is 'disk'. If a 'cdrom' is specified, and no install method is chosen, the cdrom is used as the install media.


Guest installation with multiple disks will need this parameter to boot correctly after being installed. A boot_order parameter will take values 1,2,3,... Devices with lower value has higher priority.


Disk bus type. Value can be 'ide', 'sata', 'scsi', 'usb', 'virtio' or 'xen'. The default is hypervisor dependent since not all hypervisors support all bus types.


Sets the removable flag (/sys/block/$dev/removable on Linux). Only used with QEMU and bus=usb. Value can be 'on' or 'off'.


Set drive as readonly (takes 'on' or 'off')


Set drive as shareable (takes 'on' or 'off')


size (in GiB) to use if creating new storage


whether to skip fully allocating newly created storage. Value is 'yes' or 'no'. Default is 'yes' (do not fully allocate) unless it isn't supported by the underlying storage type.

The initial time taken to fully-allocate the guest virtual disk (sparse=no) will be usually balanced by faster install times inside the guest. Thus use of this option is recommended to ensure consistently high performance and to avoid I/O errors in the guest should the host filesystem fill up.


Path to a disk to use as the backing store for the newly created image.


Disk image format of backing_store


The cache mode to be used. The host pagecache provides cache memory. The cache value can be 'none', 'writethrough', 'directsync', 'unsafe' or 'writeback'. 'writethrough' provides read caching. 'writeback' provides read and write caching. 'directsync' bypasses the host page cache. 'unsafe' may cache all content and ignore flush requests from the guest.


Whether discard (also known as "trim" or "unmap") requests are ignored or passed to the filesystem. The value can be either "unmap" (allow the discard request to be passed) or "ignore" (ignore the discard request). Since 1.0.6 (QEMU and KVM only)


Disk image format. For file volumes, this can be 'raw', 'qcow2', 'vmdk', etc. See format types in <> for possible values. This is often mapped to the driver_type value as well.

If not specified when creating file images, this will default to 'qcow2'.

If creating storage, this will be the format of the new image. If using an existing image, this overrides libvirt's format auto-detection.


Driver name the hypervisor should use when accessing the specified storage. Typically does not need to be set by the user.


Driver format/type the hypervisor should use when accessing the specified storage. Typically does not need to be set by the user.


Disk IO backend. Can be either "threads" or "native".


How guest should react if a write error is encountered. Can be one of "stop", "ignore", or "enospace"


Serial number of the emulated disk device. This is used in linux guests to set /dev/disk/by-id symlinks. An example serial number might be: WD-WMAP9A966149


It defines what to do with the disk if the source file is not accessible.  See possible values in <>

See the examples section for some uses. This option deprecates -f/--file, -s/--file-size, --nonsparse, and --nodisks.

Use --disk=? to see a list of all available sub options. Complete details at <>


Specifies a directory on the host to export to the guest. The most simple invocation is:

    --filesystem /source/on/host,/target/point/in/guest

Which will work for recent QEMU and linux guest OS or LXC containers. For QEMU, the target point is just a mounting hint in sysfs, so will not be automatically mounted.

The following explicit options can be specified:


The type or the source directory. Valid values are 'mount' (the default) or 'template' for OpenVZ templates.


The access mode for the source directory from the guest OS. Only used with QEMU and type=mount. Valid modes are 'passthrough' (the default), 'mapped', or 'squash'. See libvirt domain XML documentation for more info.


The directory on the host to share.


The mount location to use in the guest.

Use --filesystem=? to see a list of all available sub options. Complete details at <>

Networking Options

--network OPTIONS

Connect the guest to the host network. The value for "NETWORK" can take one of 4 formats:


Connect to a bridge device in the host called "BRIDGE". Use this option if the host has static networking config & the guest requires full outbound and inbound connectivity  to/from the LAN. Also use this if live migration will be used with this guest.


Connect to a virtual network in the host called "NAME". Virtual networks can be listed, created, deleted using the "virsh" command line tool. In an unmodified install of "libvirt" there is usually a virtual network with a name of "default". Use a virtual network if the host has dynamic networking (eg NetworkManager), or using wireless. The guest will be NATed to the LAN by whichever connection is active.


Direct connect to host interface IFACE using macvtap.


Connect to the LAN using SLIRP. Only use this if running a QEMU guest as an unprivileged user. This provides a very limited form of NAT.


Tell virt-install not to add any default network interface.

If this option is omitted a single NIC will be created in the guest. If there is a bridge device in the host with a physical interface enslaved, that will be used for connectivity. Failing that, the virtual network called "default" will be used. This option can be specified multiple times to setup more than one NIC.

Other available options are:


Network device model as seen by the guest. Value can be any nic model supported by the hypervisor, e.g.: 'e1000', 'rtl8139', 'virtio', ...


Fixed MAC address for the guest; If this parameter is omitted, or the value "RANDOM" is specified a suitable address will be randomly generated. For Xen virtual machines it is required that the first 3 pairs in the MAC address be the sequence '00:16:3e', while for QEMU or KVM virtual machines it must be '52:54:00'.


Controlling firewall and network filtering in libvirt. Value can be any nwfilter defined by the "virsh" 'nwfilter' subcommands. Available filters can be listed by running 'virsh nwfilter-list', e.g.: 'clean-traffic', 'no-mac-spoofing', ...


The type of virtual port profile, one the following values


The following additional parameters are accepted


The VSI Manager ID identifies the database containing the VSI type and instance definitions. This is an integer value and the value 0 is reserved.


The VSI Type ID identifies a VSI type characterizing the network access. VSI types are typically managed by network administrator. This is an integer value.


The VSI Type Version allows multiple versions of a VSI Type. This is an integer value.


The VSI Instance ID Identifier is generated when a VSI instance (i.e. a virtual interface of a virtual machine) is created. This is a globally unique identifier.


The following additional parameters are accepted


The profile ID contains the name of the port profile that is to be applied to this interface. This name is resolved by the port profile database into the network parameters from the port profile, and those network parameters will be applied to this interface.


The following additional parameters are accepted


The OpenVSwitch port profile for the interface


A UUID to uniquely identify the interface. If omitted one will be generated automatically


The following additional parameters are accepted


A UUID identifying the port in the network to which the interface will be bound

Use --network=? to see a list of all available sub options. Complete details at <>

This option deprecates -m/--mac, -b/--bridge, and --nonetworks

Graphics Options

If no graphics option is specified, "virt-install" will try to select the appropriate graphics if the DISPLAY environment variable is set, otherwise '--graphics none' is used.

--graphics TYPE,opt1=arg1,opt2=arg2,...

Specifies the graphical display configuration. This does not configure any virtual hardware, just how the guest's graphical display can be accessed. Typically the user does not need to specify this option, virt-install will try and choose a useful default, and launch a suitable connection.

General format of a graphical string is

    --graphics TYPE,opt1=arg1,opt2=arg2,...

For example:

    --graphics vnc,password=foobar

The supported options are:


The display type. This is one of:


Setup a virtual console in the guest and export it as a VNC server in the host. Unless the "port" parameter is also provided, the VNC server will run on the first free port number at 5900 or above. The actual VNC display allocated can be obtained using the "vncdisplay" command to "virsh" (or virt-viewer(1) can be used which handles this detail for the use).


Export the guest's console using the Spice protocol. Spice allows advanced features like audio and USB device streaming, as well as improved graphical performance.

Using spice graphic type will work as if those arguments were given:

    --video qxl --channel spicevmc


No graphical console will be allocated for the guest. Guests will likely need to have a text console configured on the first serial port in the guest (this can be done via the --extra-args option). The command 'virsh console NAME' can be used to connect to the serial device.


Request a permanent, statically assigned port number for the guest console. This is used by 'vnc' and 'spice'


Specify the spice tlsport.


Address to listen on for VNC/Spice connections. Default is typically (localhost only), but some hypervisors allow changing this globally (for example, the qemu driver default can be changed in /etc/libvirt/qemu.conf). Use to allow access from other machines.

Use 'none' to specify that the display server should not listen on any port. The display server can be accessed only locally through libvirt unix socket (virt-viewer with --attach for instance).

Use 'socket' to have the VM listen on a libvirt generated unix socket path on the host filesystem.

This is used by 'vnc' and 'spice'


Request that the virtual VNC console be configured to run with a specific keyboard layout. If the special value 'local' is specified, virt-install will attempt to configure to use the same keymap as the local system. A value of 'none' specifically defers to the hypervisor. Default behavior is hypervisor specific, but typically is the same as 'local'. This is used by 'vnc'


Request a VNC password, required at connection time. Beware, this info may end up in virt-install log files, so don't use an important password. This is used by 'vnc' and 'spice'


Whether to use OpenGl accelerated rendering. Value is 'yes' or 'no'. This is used by 'spice'.

Use --graphics=? to see a list of all available sub options. Complete details at <>

This deprecates the following options: --vnc, --vncport, --vnclisten, -k/--keymap, --sdl, --nographics


Don't automatically try to connect to the guest console. The default behaviour is to launch virt-viewer(1) to display the graphical console, or to run the "virsh" "console" command to display the text console. Use of this parameter will disable this behaviour.

Virtualization Options

Options to override the default virtualization type choices.


Request the use of full virtualization, if both para & full virtualization are available on the host. This parameter may not be available if connecting to a Xen hypervisor on a machine without hardware virtualization support. This parameter is implied if connecting to a QEMU based hypervisor.


This guest should be a paravirtualized guest. If the host supports both para & full virtualization, and neither this parameter nor the "--hvm" are specified, this will be assumed.


This guest should be a container type guest. This option is only required if the hypervisor supports other guest types as well (so for example this option is the default behavior for LXC and OpenVZ, but is provided for completeness).


The hypervisor to install on. Example choices are kvm, qemu, or xen. Available options are listed via 'virsh capabilities' in the <domain> tags.

This deprecates the --accelerate option, which is now the default behavior. To install a plain QEMU guest, use '--virt-type qemu'

Device Options

All devices have a set of address.* options for configuring the particulars of the device's address on its parent controller or bus. See "" for details.

--controller OPTIONS

Attach a controller device to the guest. TYPE is one of: ide, fdc, scsi, sata, virtio-serial, or usb.

Controller also supports the special values usb2 and usb3 to specify which version of the USB controller should be used (version 2 or 3).


Controller model.  These may vary according to the hypervisor and its version.  Most commonly used models are e.g. auto, virtio-scsi for the scsi controller, ehci or none for the usb controller.  For full list and further details on controllers/models, see "".


Shorthand for setting a manual PCI address from an lscpi style string. The preferred method for setting this is using the address.* parameters.


A decimal integer describing in which order the bus controller is encountered, and to reference the controller bus.


Applicable to USB companion controllers, to define the master bus startport.


--controller usb,model=ich9-ehci1,address=0:0:4.0,index=0

Adds a ICH9 EHCI1 USB controller on PCI address 0:0:4.0

--controller usb,model=ich9-uhci2,address=0:0:4.7,index=0,master=2

Adds a ICH9 UHCI2 USB companion controller for the previous master controller, ports start from port number 2.

The parameter multifunction='on' will be added automatically to the proper device (if needed).  This applies to all PCI devices.

Use --controller=? to see a list of all available sub options. Complete details at <>

--input OPTIONS

Attach an input device to the guest. Example input device types are mouse, tablet, or keyboard.

Use --input=? to see a list of all available sub options. Complete details at <>

--hostdev OPTIONS
--host-device OPTIONS

Attach a physical host device to the guest. Some example values for HOSTDEV:

--hostdev pci_0000_00_1b_0

A node device name via libvirt, as shown by 'virsh nodedev-list'

--hostdev 001.003

USB by bus, device (via lsusb).

--hostdev 0x1234:0x5678

USB by vendor, product (via lsusb).

--hostdev 1f.01.02

PCI device (via lspci).

Use --hostdev=? to see a list of all available sub options. Complete details at <>

--sound MODEL

Attach a virtual audio device to the guest. MODEL specifies the emulated sound card model. Possible values are ich6, ich9, ac97, es1370, sb16, pcspk, or default. 'default' will try to pick the best model that the specified OS supports.

This deprecates the old --soundhw option.

Use --sound=? to see a list of all available sub options. Complete details at <>

--watchdog MODEL[,action=ACTION]

Attach a virtual hardware watchdog device to the guest. This requires a daemon and device driver in the guest. The watchdog fires a signal when the virtual machine appears to hung. ACTION specifies what libvirt will do when the watchdog fires. Values are


Forcefully reset the guest (the default)


Forcefully power off the guest


Pause the guest


Do nothing


Gracefully shutdown the guest (not recommended, since a hung guest probably won't respond to a graceful shutdown)

MODEL is the emulated device model: either i6300esb (the default) or ib700. Some examples:

Use the recommended settings:

--watchdog default

Use the i6300esb with the 'poweroff' action

--watchdog i6300esb,action=poweroff

Use --watchdog=? to see a list of all available sub options. Complete details at <>

--parallel OPTIONS
--serial OPTIONS

Specifies a serial device to attach to the guest, with various options. The general format of a serial string is

    --serial type,opt1=val1,opt2=val2,...

--serial and --parallel devices share all the same options, unless otherwise noted. Some of the types of character device redirection are:

--serial pty

Pseudo TTY. The allocated pty will be listed in the running guests XML description.

--serial dev,path=HOSTPATH

Host device. For serial devices, this could be /dev/ttyS0. For parallel devices, this could be /dev/parport0.

--serial file,path=FILENAME

Write output to FILENAME.

--serial pipe,path=PIPEPATH

Named pipe (see pipe(7))

--serial tcp,host=HOST:PORT,mode=MODE,protocol=PROTOCOL

TCP net console. MODE is either 'bind' (wait for connections on HOST:PORT) or 'connect' (send output to HOST:PORT), default is 'bind'. HOST defaults to '', but PORT is required. PROTOCOL can be either 'raw' or 'telnet' (default 'raw'). If 'telnet', the port acts like a telnet server or client. Some examples:

Wait for connections on any address, port 4567:

--serial tcp,host=

Connect to localhost, port 1234:

--serial tcp,host=:1234,mode=connect

Wait for telnet connection on localhost, port 2222. The user could then connect interactively to this console via 'telnet localhost 2222':

--serial tcp,host=:2222,mode=bind,protocol=telnet

--serial udp,host=CONNECT_HOST:PORT,bind_host=BIND_HOST:BIND_PORT

UDP net console. HOST:PORT is the destination to send output to (default HOST is '', PORT is required). BIND_HOST:BIND_PORT is the optional local address to bind to (default BIND_HOST is, but is only set if BIND_PORT is specified). Some examples:

Send output to default syslog port (may need to edit /etc/rsyslog.conf accordingly):

--serial udp,host=:514

Send output to remote host, port 4444 (this output can be read on the remote host using 'nc -u -l 4444'):

--serial udp,host=

--serial unix,path=UNIXPATH,mode=MODE

Unix socket, see unix(7). MODE has similar behavior and defaults as --serial tcp,mode=MODE


Specifies a communication channel device to connect the guest and host machine. This option uses the same options as --serial and --parallel for specifying the host/source end of the channel. Extra 'target' options are used to specify how the guest machine sees the channel.

Some of the types of character device redirection are:

--channel SOURCE,target_type=guestfwd,target_address=HOST:PORT

Communication channel using QEMU usermode networking stack. The guest can connect to the channel using the specified HOST:PORT combination.

--channel SOURCE,target_type=virtio[,name=NAME]

Communication channel using virtio serial (requires 2.6.34 or later host and guest). Each instance of a virtio --channel line is exposed in the guest as /dev/vport0p1, /dev/vport0p2, etc. NAME is optional metadata, and can be any string, such as org.linux-kvm.virtioport1. If specified, this will be exposed in the guest at /sys/class/virtio-ports/vport0p1/NAME

--channel spicevmc,target_type=virtio[,name=NAME]

Communication channel for QEMU spice agent, using virtio serial (requires 2.6.34 or later host and guest). NAME is optional metadata, and can be any string, such as the default com.redhat.spice.0 that specifies how the guest will see the channel.

Use --channel=? to see a list of all available sub options. Complete details at <>


Connect a text console between the guest and host. Certain guest and hypervisor combinations can automatically set up a getty in the guest, so an out of the box text login can be provided (target_type=xen for xen paravirt guests, and possibly target_type=virtio in the future).


--console pty,target_type=virtio

Connect a virtio console to the guest, redirected to a PTY on the host. For supported guests, this exposes /dev/hvc0 in the guest. See for more info. virtio console requires libvirt 0.8.3 or later.

Use --console=? to see a list of all available sub options. Complete details at <>

--video OPTIONS

Specify what video device model will be attached to the guest. Valid values for VIDEO are hypervisor specific, but some options for recent kvm are cirrus, vga, qxl, virtio, or vmvga (vmware).

Use --video=? to see a list of all available sub options. Complete details at <>

--smartcard MODE[,OPTIONS]

Configure a virtual smartcard device.

Mode is one of host, host-certificates, or passthrough. Additional options are:


Character device type to connect to on the host. This is only applicable for passthrough mode.

An example invocation:

--smartcard passthrough,type=spicevmc

Use the smartcard channel of a SPICE graphics device to pass smartcard info to the guest

Use --smartcard=? to see a list of all available sub options. Complete details at <>

--redirdev BUS[,OPTIONS]

Add a redirected device.


The redirection type, currently supported is tcp or spicevmc.


The TCP server connection details, of the form 'server:port'.

Examples of invocation:

--redirdev usb,type=tcp,server=localhost:4000

Add a USB redirected device provided by the TCP server on 'localhost' port 4000.

--redirdev usb,type=spicevmc

Add a USB device redirected via a dedicated Spice channel.

Use --redirdev=? to see a list of all available sub options. Complete details at <>

--memballoon MODEL

Attach a virtual memory balloon device to the guest. If the memballoon device needs to be explicitly disabled, MODEL='none' is used.

MODEL is the type of memballoon device provided. The value can be 'virtio', 'xen' or 'none'. Some examples:

Use the recommended settings:

--memballoon virtio

Do not use memballoon device:

--memballoon none

Use --memballoon=? to see a list of all available sub options. Complete details at <>


Configure a virtual TPM device.

Type must be passthrough. Additional options are:


The device model to present to the guest operating system. Model must be tpm-tis.

An example invocation:

--tpm passthrough,model=tpm-tis

Make the host's TPM accessible to a single guest.

--tpm /dev/tpm

Convenience option for passing through the hosts TPM.

Use --tpm=? to see a list of all available sub options. Complete details at <>


Configure a virtual RNG device.

Type can be random or egd.

If the specified type is random then these values must be specified:


The device to use as a source of entropy.

Whereas, when the type is egd, these values must be provided:


Specify the host of the Entropy Gathering Daemon to connect to.


Specify the port of the Entropy Gathering Daemon to connect to.


Specify the type of the connection: tcp or udp.


Specify the mode of the connection.  It is either 'bind' (wait for connections on HOST:PORT) or 'connect' (send output to HOST:PORT).


Specify the remote host to connect to when the specified backend_type is udp and backend_mode is bind.


Specify the remote service to connect to when the specified backend_type is udp and backend_mode is bind.

An example invocation:

--rng egd,backend_host=localhost,backend_service=8000,backend_type=tcp

Connect to localhost to the TCP port 8000 to get entropy data.

--rng /dev/random

Use the /dev/random device to get entropy data, this form implicitly uses the "random" model.

Use --rng=? to see a list of all available sub options. Complete details at <>

--panic OPTS

Attach a panic notifier device to the guest. For the recommended settings, use:

--panic default

Use --panic=? to see a list of all available sub options. Complete details at <>

Miscellaneous Options


Show the help message and exit


Show program's version number and exit


Set the autostart flag for a domain. This causes the domain to be started on host boot up.


Use --import or --boot and --transient if you want a transient libvirt VM.  These VMs exist only until the domain is shut down or the host server is restarted.  Libvirt forgets the XML configuration of the VM after either of these events.  Note that the VM's disks will not be deleted.  See: <>

--print-xml [STEP]

Print the generated XML of the guest, instead of defining it. By default this WILL do storage creation (can be disabled with --dry-run). This option implies --quiet.

If the VM install has multiple phases, by default this will print all generated XML. If you want to print a particular step, use --print-xml 2 (for the second phase XML).


Prevent the domain from automatically rebooting after the install has completed.

--wait WAIT

Amount of time to wait (in minutes) for a VM to complete its install. Without this option, virt-install will wait for the console to close (not necessarily indicating the guest has shutdown), or in the case of --noautoconsole, simply kick off the install and exit. Any negative value will make virt-install wait indefinitely, a value of 0 triggers the same results as noautoconsole. If the time limit is exceeded, virt-install simply exits, leaving the virtual machine in its current state.


Proceed through the guest creation process, but do NOT create storage devices, change host device configuration, or actually teach libvirt about the guest. virt-install may still fetch install media, since this is required to properly detect the OS to install.


Enable or disable some validation checks. Some examples are warning about using a disk that's already assigned to another VM (--check path_in_use=on|off), or warning about potentially running out of space during disk allocation (--check disk_size=on|off). Most checks are performed by default.


Only print fatal error messages.


Print debugging information to the terminal when running the install process. The debugging information is also stored in "~/.cache/virt-manager/virt-install.log" even if this parameter is omitted.


Install a Fedora 20 KVM guest with virtio accelerated disk/network, creating a new 10GiB qcow2 file, installing from media in the hosts CDROM drive. This will use Spice graphics by default, and launch autolaunch a graphical client.

  # virt-install \
       --connect qemu:///system \
       --virt-type kvm \
       --name demo \
       --memory 500 \
       --disk size=10 \
       --cdrom /dev/cdrom \
       --os-variant fedora13

Install a Fedora 9 plain QEMU guest, using LVM partition, virtual networking, booting from PXE, using VNC server/viewer, with virtio-scsi disk

  # virt-install \
       --connect qemu:///system \
       --name demo \
       --memory 500 \
       --disk path=/dev/HostVG/DemoVM,bus=scsi \
       --controller virtio-scsi \
       --network network=default \
       --virt-type qemu
       --graphics vnc \
       --os-variant fedora9

Run a Live CD image under Xen fullyvirt, in diskless environment

  # virt-install \
       --hvm \
       --name demo \
       --memory 500 \
       --disk none \
       --livecd \
       --graphics vnc \
       --cdrom /root/fedora7live.iso

Run /usr/bin/httpd in a linux container guest (LXC). Resource usage is capped at 512 MiB of ram and 2 host cpus:

  # virt-install \
        --connect lxc:/// \
        --name httpd_guest \
        --memory 512 \
        --vcpus 2 \
        --init /usr/bin/httpd

Start a linux container guest(LXC) with a private root filesystem, using /bin/sh as init. Container's root will be under host dir /home/LXC. The host dir "/home/test" will be mounted at "/mnt" dir inside container:

  # virt-install \
        --connect lxc:/// \
        --name container \
        --memory 128 \
        --filesystem /home/LXC,/ \
        --filesystem /home/test,/mnt \
        --init /bin/sh

Install a paravirtualized Xen guest, 500 MiB of RAM, a 5 GiB of disk, and Fedora Core 6 from a web server, in text-only mode, with old style --file options:

  # virt-install \
       --paravirt \
       --name demo \
       --memory 500 \
       --disk /var/lib/xen/images/demo.img,size=6 \
       --graphics none \

Create a guest from an existing disk image 'mydisk.img' using defaults for the rest of the options.

  # virt-install \
       --name demo \
       --memory 512 \
       --disk /home/user/VMs/mydisk.img \

Start serial QEMU ARM VM, which requires specifying a manual kernel.

  # virt-install \
       --name armtest \
       --memory 1024 \
       --arch armv7l --machine vexpress-a9 \
       --disk /home/user/VMs/myarmdisk.img \
       --boot kernel=/tmp/my-arm-kernel,initrd=/tmp/my-arm-initrd,dtb=/tmp/my-arm-dtb,kernel_args="console=ttyAMA0 rw root=/dev/mmcblk0p3" \
       --graphics none


Please see

See Also

virsh(1), "virt-clone(1)", "virt-manager(1)", the project website ""

Referenced By

libvirtd(8), stapvirt(1), virsh(1), virt-builder(1), virt-clone(1), virt-convert(1), virt-xml(1).

2017-02-12 1.4.0 Virtual Machine Manager