tpm2_pcrread - Man Page

List PCR values.


tpm2_pcrread [Options] PCR_LIST_OR_ALG


tpm2_pcrread(1) - Displays PCR values. Without any arguments, tpm2_pcrread(1) outputs all PCRs and their hash banks. One can use specify the hash algorithm or a pcr list as an argument to filter the output.

To only output PCR banks with a given algorithm, specify the hashing algorithm as the argument. Algorithms should follow the “formatting standards”, see section “Algorithm Specifiers”. Also, see section “Supported Hash Algorithms” for a list of supported hash algorithms.

To output a list of PCR banks (sha1, sha256, etc) and ids (0, 1, 2 etc) specify a PCR selection list as the argument as specified via section “PCR Bank Specifiers”.

Also read Notes section below.

Output is written in a YAML format to stdout, with each algorithm followed by a PCR index and its value. As a simple example assume just sha1 and sha256 support and only 1 PCR. The output would be:

$ tpm2_pcrread sha1:0+sha256:0
sha1 :
  0  : 0000000000000000000000000000000000000003
sha256 :
  0  : 0000000000000000000000000000000000000000000000000000000000000003


Common Options

This collection of options are common to many programs and provide information that many users may expect.

TCTI Configuration

The TCTI or “Transmission Interface” is the communication mechanism with the TPM. TCTIs can be changed for communication with TPMs across different mediums.

To control the TCTI, the tools respect:

  1. The command line option -T or --tcti
  2. The environment variable: TPM2TOOLS_TCTI.

Note: The command line option always overrides the environment variable.

The current known TCTIs are:

The arguments to either the command line option or the environment variable are in the form:


Specifying an empty string for either the <tcti-name> or <tcti-option-config> results in the default being used for that portion respectively.

TCTI Defaults

When a TCTI is not specified, the default TCTI is searched for using dlopen(3) semantics. The tools will search for tabrmd, device and mssim TCTIs IN THAT ORDER and USE THE FIRST ONE FOUND. You can query what TCTI will be chosen as the default by using the -v option to print the version information. The “default-tcti” key-value pair will indicate which of the aforementioned TCTIs is the default.

Custom TCTIs

Any TCTI that implements the dynamic TCTI interface can be loaded. The tools internally use dlopen(3), and the raw tcti-name value is used for the lookup. Thus, this could be a path to the shared library, or a library name as understood by dlopen(3) semantics.

Tcti Options

This collection of options are used to configure the various known TCTI modules available:

PCR bank specifiers

Supported Hash Algorithms

Supported hash algorithms are:

NOTE: Your TPM may not support all algorithms.

Algorithm Specifiers

Options that take algorithms support “nice-names”.

There are two major algorithm specification string classes, simple and complex. Only certain algorithms will be accepted by the TPM, based on usage and conditions.

Simple specifiers

These are strings with no additional specification data. When creating objects, non-specified portions of an object are assumed to defaults. You can find the list of known “Simple Specifiers” below.


  • rsa
  • ecc


  • aes
  • camellia
  • sm4

Hashing Algorithms

  • sha1
  • sha256
  • sha384
  • sha512
  • sm3_256
  • sha3_256
  • sha3_384
  • sha3_512

Keyed Hash

  • hmac
  • xor

Signing Schemes

  • rsassa
  • rsapss
  • ecdsa
  • ecdaa
  • ecschnorr
  • sm2

Asymmetric Encryption Schemes

  • oaep
  • rsaes
  • ecdh


  • ctr
  • ofb
  • cbc
  • cfb
  • ecb


  • null

Complex Specifiers

Objects, when specified for creation by the TPM, have numerous algorithms to populate in the public data. Things like type, scheme and asymmetric details, key size, etc. Below is the general format for specifying this data: <type>:<scheme>:<symmetric-details>

Type Specifiers

This portion of the complex algorithm specifier is required. The remaining scheme and symmetric details will default based on the type specified and the type of the object being created.

  • aes - Default AES: aes128
  • aes128<mode> - 128 bit AES with optional mode (ctr|ofb|cbc|cfb|ecb). If mode is not specified, defaults to null.
  • aes192<mode> - Same as aes128<mode>, except for a 192 bit key size.
  • aes256<mode> - Same as aes128<mode>, except for a 256 bit key size.
  • sm4 - Default SM4: sm4128
  • sm4128 or sm4_128 <mode> - 128 bit SM4 with optional mode (ctr|ofb|cbc|cfb|ecb). If mode is not specified, defaults to null.
  • ecc - Elliptical Curve, defaults to ecc256.
  • ecc192 or ecc_nist_p192 - 192 bit ECC NIST curve
  • ecc224 or ecc_nist_p224 - 224 bit ECC NIST curve
  • ecc256 or ecc_nist_p256 - 256 bit ECC NIST curve
  • ecc384 or ecc_nist_p384 - 384 bit ECC NIST curve
  • ecc521 or ecc_nist_p521 - 521 bit ECC NIST curve
  • ecc_sm2 or ecc_sm2_p256 - 256 bit SM2 curve
  • rsa - Default RSA: rsa2048
  • rsa1024 - RSA with 1024 bit keysize.
  • rsa2048 - RSA with 2048 bit keysize.
  • rsa3072 - RSA with 3072 bit keysize.
  • rsa4096 - RSA with 4096 bit keysize.

Scheme Specifiers

Next, is an optional field, it can be skipped.

Schemes are usually Signing Schemes or Asymmetric Encryption Schemes. Most signing schemes take a hash algorithm directly following the signing scheme. If the hash algorithm is missing, it defaults to sha256. Some take no arguments, and some take multiple arguments.

Hash Optional Scheme Specifiers

These scheme specifiers are followed by a dash and a valid hash algorithm, For example: oaep-sha256.

  • oaep
  • ecdh
  • rsassa
  • rsapss
  • ecdsa
  • ecschnorr
  • sm2

Multiple Option Scheme Specifiers

This scheme specifier is followed by a count (max size UINT16) then followed by a dash(-) and a valid hash algorithm. * ecdaa For example, ecdaa4-sha256. If no count is specified, it defaults to 4.

No Option Scheme Specifiers

This scheme specifier takes NO arguments. * rsaes

Symmetric Details Specifiers

This field is optional, and defaults based on the type of object being created and it’s attributes. Generally, any valid Symmetric specifier from the Type Specifiers list should work. If not specified, an asymmetric objects symmetric details defaults to aes128cfb.


Create an rsa2048 key with an rsaes asymmetric encryption scheme

tpm2_create -C parent.ctx -G rsa2048:rsaes -u -r key.priv

Create an ecc256 key with an ecdaa signing scheme with a count of 4 and sha384 hash

/tpm2_create -C parent.ctx -G ecc256:ecdaa4-sha384 -u -r key.priv


Display all PCR values


Display the PCR values with a specified bank

tpm2_pcrread sha1

Display the PCR values with specified banks and store in a file

tpm2_pcrread -o pcrs sha1:16,17,18+sha256:16,17,18

Display the supported PCR bank algorithms and exit



The maximum number of PCR that can be dumped at once is associated with the maximum length of a bank.

On most TPMs, it means that this tool can dump up to 24 PCRs at once.


Tools can return any of the following codes:


Github Issues (


See the Mailing List (

Referenced By

tpm2_activatecredential(1), tpm2_certify(1), tpm2_certifycreation(1), tpm2_changeauth(1), tpm2_changeeps(1), tpm2_changepps(1), tpm2_clear(1), tpm2_clearcontrol(1), tpm2_clockrateadjust(1), tpm2_create(1), tpm2_createak(1), tpm2_createek(1), tpm2_createprimary(1), tpm2_dictionarylockout(1), tpm2_duplicate(1), tpm2_encodeobject(1), tpm2_encryptdecrypt(1), tpm2_evictcontrol(1), tpm2_getcommandauditdigest(1), tpm2_getsessionauditdigest(1), tpm2_gettime(1), tpm2_hash(1), tpm2_hierarchycontrol(1), tpm2_hmac(1), tpm2_import(1), tpm2_load(1), tpm2_loadexternal(1), tpm2_nvcertify(1), tpm2_nvdefine(1), tpm2_nvextend(1), tpm2_nvincrement(1), tpm2_nvread(1), tpm2_nvreadlock(1), tpm2_nvsetbits(1), tpm2_nvundefine(1), tpm2_nvwrite(1), tpm2_nvwritelock(1), tpm2_pcrallocate(1), tpm2_pcrevent(1), tpm2_policypcr(1), tpm2_policysecret(1), tpm2_print(1), tpm2_quote(1), tpm2_rsadecrypt(1), tpm2_rsaencrypt(1), tpm2_setclock(1), tpm2_setprimarypolicy(1), tpm2_sign(1), tpm2_startauthsession(1), tpm2_unseal(1).

tpm2-tools General Commands Manual