Your company here — click to reach over 10,000 unique daily visitors

t.rast.univar.1grass - Man Page

Calculates univariate statistics from the non-null cells for each registered raster map of a space time raster dataset.


temporal, statistics, raster, time, parallel


t.rast.univar --help
t.rast.univar [-eru] input=name  [zones=name]   [nprocs=integer]   [output=name]   [where=sql_query]   [separator=character]   [--overwrite]  [--help]  [--verbose]  [--quiet]  [--ui]



Calculate extended statistics


Ignore the current region settings and use the raster map regions for univar statistical calculation


Suppress printing of column names


Allow output files to overwrite existing files


Print usage summary


Verbose module output


Quiet module output


Force launching GUI dialog


input=name [required]

Name of the input space time raster dataset


Raster map used for zoning, must be of type CELL


Number of threads for parallel computing
Default: 1


Name for output file


WHERE conditions of SQL statement without ’where’ keyword used in the temporal GIS framework
Example: start_time > ’2001-01-01 12:30:00’


Field separator character between the output columns
Special characters: pipe, comma, space, tab, newline
Default: pipe


t.rast.univar calculates univariate statistics from the non-null cells for each registered raster map of a space time raster dataset.

By default it returns the name of the map, the start and end date of dataset and the following values: mean, minimum and maximum vale, mean_of_abs, standard deviation, variance, coeff_var, number of null cells, total number of cells.

Using the e flag it can calculate also extended statistics: first quartile, median value, third quartile and percentile 90.

If a zones raster map is provided, statistics are computed for each zone (category) in that input raster map. The zones option does not support Spatio-Temporal-Raster-Datasets (STRDS) but only a single, static raster map.


Obtain the univariate statistics for the raster space time dataset "tempmean_monthly" (precision reduced to 2 decimals in this example):

t.rast.univar -e tempmean_monthly
2009_01_tempmean@climate_2009_2012|2009-01-01 00:00:00|2009-02-01 00:00:00|3.90|-3.38|7.43|3.95|1.79|3.20|45.91|1977967.31|503233|1010600|2.80|3.92|5.21|6.23
2009_02_tempmean@climate_2009_2012|2009-02-01 00:00:00|2009-03-01 00:00:00|5.91|-1.82|8.01|5.92|1.63|2.65|27.53|2999555.60|503233|1010600|5.44|6.26|7.07|7.48
2012_11_tempmean@climate_2009_2012|2012-11-01 00:00:00|2012-12-01 00:00:00|8.03|1.79|10.91|8.03|1.32|1.73|16.41|4072472.77|503233|1010600|7.49|8.13|8.96|9.48
2012_12_tempmean@climate_2009_2012|2012-12-01 00:00:00|2013-01-01 00:00:00|8.71|1.76|11.98|8.71|1.72|2.95|19.74|4418403.77|503233|1010600|7.84|8.95|9.99|10.67

See Also

t.create, t.info t.create,


Sören Gebbert, Thünen Institute of Climate-Smart Agriculture Stefan Blumentrath, (Support for zones)

Source Code

Available at: t.rast.univar source code (history)

Accessed: Tuesday May 14 13:42:03 2024

Main index | Temporal index | Topics index | Keywords index | Graphical index | Full index

© 2003-2024 GRASS Development Team, GRASS GIS 8.3.2 Reference Manual


GRASS 8.3.2 GRASS GIS User's Manual